ZHANG Jiaen, WEI Shengbao, LIU Xing, et al. Research progress and prospect of integrated rice-fish coculture[J]. Journal of South China Agricultural University, 2024, 45(6): 812-824. DOI: 10.7671/j.issn.1001-411X.202409007
    Citation: ZHANG Jiaen, WEI Shengbao, LIU Xing, et al. Research progress and prospect of integrated rice-fish coculture[J]. Journal of South China Agricultural University, 2024, 45(6): 812-824. DOI: 10.7671/j.issn.1001-411X.202409007

    Research progress and prospect of integrated rice-fish coculture

    More Information
    • Author Bio:

      ZHANG Jiaen:   章家恩,博士,华南农业大学二级教授,博士生导师。主要从事农业生态学、土壤生态学和入侵生态学等方面的科研和教学工作,荣获“全国优秀教师”称号,是广东省“千百十工程”国家级培养对象、广东省珠江学者特聘教授、广东特支计划领军人才、广东省现代农业产业技术体系岗位专家。兼任中国生态学学会常务理事、中国生态学学会农业生态专业委员会主任,中国土壤学会土壤生态专业委员会委员、广东省生态学会副理事长、广东省可持续发展协会副理事长、广东省未来预测研究会副理事长,《生态科学》编委会副主任以及《中国生态农业学报》《华南农业大学学报》等杂志编委。近年来,共承担国家(省、部)级科研项目50多项,已发表学术论文300多篇,主编教材和专著10多部,参编10多部;申报发明专利和实用新型专利60多项,其中,已授权40多项;获省部级科研与教学成果奖励10项

    • Received Date: September 08, 2024
    • Available Online: October 16, 2024
    • Published Date: October 22, 2024
    • Integrated rice-fish coculture is a green and low-carbon agricultural development model which is currently encouraged, supported, vigorously promoted and applied with an expanding production practice area in China. In the meantime, there are increasingly relevant theoretical and practical research findings, along with some new emerging technologies, modes, situations and issues. This paper reviewed the development status, key research fields and related progress of integrated rice-fish coculture in China, and analyzed the key issues and development directions to be solved urgently for scientification & precision, standardization & package, smartization & simplification and multifunction & industrialization of integrated rice-fish coculture at present. The prospects for the future research and industrialization of integrated rice-fish coculture were put forward in four aspects including the long-term and networking field observation researches on technologies and models of the integrated rice-fish coculture, the innovation and integration of key/supporting/interfacing technologies and optimal coculture systems, the standardization, smartization and industrialization of technologies for integrated rice-fish coculture, and the carbon/nitrogen sink enhancement, emission reduction and green and low-carbon development. This paper could provide references for better promoting relevant research of integrated rice-fish culture as well as the high-quality development of paddy eco-industry in China.

    • [1]
      FAO. Food and agriculture data[DB/OL]. (2023-12-23)[2024-08-08]. https://www.fao.org/faostat/en/#home.
      [2]
      VAN ITTERSUM M K. Crop yields and global food security: Will yield increase continue to feed the world?[J]. European Review of Agricultural Economics, 2016, 43(1): 191-192. doi: 10.1093/erae/jbv034
      [3]
      CHEN W F, XU Z J, TANG L. 20 years' development of super rice in China: The 20th anniversary of the super rice in China[J]. Journal of Integrative Agriculture, 2017, 16(5): 981-983.
      [4]
      CASSMAN K G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 5952-5959.
      [5]
      SWANSON B E. Global review of good agricultural extension and advisory service practices[M]. Rome: FAO , 2008.
      [6]
      TIMMER C P, BLOCK S, DAWE D. Long-run dynamics of rice consumption, 1960−2050[C]//PANDEY D, BYERLEE D, DAWE D, et al. Rice in the global economy: Strategic research and policy issues for food security. Philippines: IRRI, 2010: 139-174.
      [7]
      GRUBE A, DONALDSON D, KIELY T L, et al. Pesticides industry sales and usage 2006 and 2007 market estimates[R]. Washington, D C: Office of Pesticide Programs, Office of Chemical Safety and Pollution Prevention, U. S. Environmental Protection Agency, 2011.
      [8]
      HEFFER P, GRUERE A, ROBERTS T. Assessment of fertilizer use by crop at the global level 2014-2014/15[R]. Paris: International Fertilizer Association (IFA) and International Plant Nutrition Institute (IPNI), 2017.
      [9]
      GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. doi: 10.1126/science.1182570
      [10]
      FOLEY J A, RAMANKUTTY N, BRAUMAN K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342. doi: 10.1038/nature10452
      [11]
      ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. doi: 10.1038/nature15743
      [12]
      SOLOMON S. Climate change 2007: The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007
      [13]
      LINQUIST B, VAN GROENIGEN K J, ADVIENTO-BORBE M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology, 2012, 18(1): 194-209. doi: 10.1111/j.1365-2486.2011.02502.x
      [14]
      李俊杰, 李建平. 水稻生产成本效益国际比较及中国发展前景[J]. 中国稻米, 2021, 27(4): 22-30.
      [15]
      LI Y F, WU T Y, WANG S D, et al. Developing integrated rice-animal farming based on climate and farmers choices[J]. Agricultural Systems, 2023, 204: 103554. doi: 10.1016/j.agsy.2022.103554
      [16]
      CUI J, LIU H, WANG H, et al. Rice-animal co-culture systems benefit global sustainable intensification[J]. Earths Future, 2023, 11(2): e2022EF002984. doi: 10.1029/2022EF002984
      [17]
      HALWART M, GUPTA M V. Culture of fish in rice fields[M]. Penang: FAO and the World Fish Center, 2004.
      [18]
      DE SOUSA A M B, SANTOS R R S, MORAES F H R, et al. Exploring the potential for sustainable weed control with integrated rice-fish culture for smallholder irrigated rice agriculture in the Maranhão Lowlands of Amazonia[J]. Renewable Agriculture and Food Systems, 2012, 27(2): 107-114. doi: 10.1017/S174217051100024X
      [19]
      FREI M, BECKER K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1/2/3/4): 119-128.
      [20]
      CLAVERO M, LÓPEZ V, FRANCH N, et al. Use of seasonally flooded rice fields by fish and crayfish in a Mediterranean wetland[J]. Agriculture Ecosystems & Environment, 2015, 213: 39-46.
      [21]
      DARTEY P K A, BAM R K, OFORI J N. Preliminary studies in rice-fish culture in a rainfed lowland ecology in Ghana[J]. Ghana Journal of Agricultural Science, 1999, 32(1): 123.
      [22]
      NNAJI J C, MADU C T, RAJI A. Profitability of rice-fish farming in Bida, North Central Nigeria[J]. Journal of Fisheries and Aquatic Science, 2013, 8(1): 148-153.
      [23]
      李荣福, 杜雪地, 徐忠香, 等. 中国稻田渔业起源与历史分析[J]. 中国渔业经济, 2023, 41(3): 113-126.
      [24]
      中国稻渔综合种养产业发展报告(2018)[J]. 中国水产, 2019(1): 20-27.
      [25]
      农业农村部. 农业农村部关于推进稻渔综合种养产业高质量发展的指导意见[J]. 河南水产, 2022(6): 38-39.
      [26]
      中国稻渔综合种养产业发展报告(2024)全文发布[J]. 中国水产, 2024(8): 12-17.
      [27]
      于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26.
      [28]
      OEHME M, FREI M, RAZZAK M A, et al. Studies on nitrogen cycling under different nitrogen inputs in integrated rice-fish culture in Bangladesh[J]. Nutrient Cycling in Agroecosystems, 2007, 79(2): 181-191. doi: 10.1007/s10705-007-9106-6
      [29]
      YU H Y, ZHANG X C, SHEN W Y, et al. A meta-analysis of ecological functions and economic benefits of co-culture models in paddy fields[J]. Agriculture Ecosystems & Environment, 2023, 341: 108195.
      [30]
      中国小龙虾产业发展报告(2024)[J]. 中国水产, 2024(7): 14-20.
      [31]
      于秀娟, 郝向举, 杨霖坤, 等. 中国小龙虾产业发展报告(2023)[J]. 中国水产, 2023(7): 26-31.
      [32]
      倪达书, 汪建国. 稻鱼共生生态系统中物质循环及经济效益[J]. 水产科技情报, 1985(6): 1-4.
      [33]
      JI Z J, ZHAO L F, ZHANG T J, et al. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem[J]. Journal of Plant Ecology, 2023, 16(6): rtad014. doi: 10.1093/jpe/rtad014
      [34]
      XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387.
      [35]
      LIU J F, ZHANG Q, WANG Q Y, et al. Gross ecosystem product accounting of a globally important agricultural heritage system: The Longxian rice-fish symbiotic system[J]. Sustainability, 2023, 15(13): 10407. doi: 10.3390/su151310407
      [36]
      钟波. 稻−鳅生态系统能值分析[J]. 中国稻米, 2013, 19(3): 48-50.
      [37]
      DONG S P, GAO Y F, GAO Y P, et al. Evaluation of the trophic structure and energy flow of a rice-crayfish integrated farming ecosystem based on the Ecopath model[J]. Aquaculture, 2021, 539: 736626. doi: 10.1016/j.aquaculture.2021.736626
      [38]
      甄若宏, 王强盛, 张卫建, 等. 稻鸭共作对水稻条纹叶枯病发生规律的影响[J]. 生态学报, 2006, 26(9): 3060-3065.
      [39]
      张亚, 廖晓兰, 刘薇, 等. 鸭粪提取物对水稻纹枯病菌的影响及其有效成分分析[J]. 中国生态农业学报, 2010, 18(1): 102-105.
      [40]
      陈欣, 唐建军. 农业系统中生物多样性利用的研究现状与未来思考[J]. 中国生态农业学报, 2013, 21(1): 54-60.
      [41]
      曹志强, 梁知洁, 赵艺欣, 等. 北方稻田养鱼的共生效应研究[J]. 应用生态学报, 2001, 12(3): 405-408.
      [42]
      谢坚, 刘领, 陈欣, 等. 传统稻鱼系统病虫草害控制[J]. 科技通报, 2009, 25(6): 801-805.
      [43]
      陈文辉, 彭亮, 刘莹莹, 等. 江汉平原稻虾综合种养模式经济效益和生态效益分析[J]. 湖北农业科学, 2019, 58(14): 160-166.
      [44]
      黄毅斌, 翁伯奇, 唐建阳, 等. 稻−萍−鱼体系对稻田土壤环境的影响[J]. 中国生态农业学报, 2001, 9(1): 74-76.
      [45]
      李锡勇, 黄婕. 水稻免耕养鱼田稻飞虱消长观察试验初报[J]. 广西农学报, 2005, 20(6): 7-9.
      [46]
      吴敏芳, 郭梁, 张剑, 等. 稻鱼共作对稻纵卷叶螟和水稻生长的影响[J]. 浙江农业科学, 2016, 57(3): 446-449.
      [47]
      魏守辉, 强胜, 马波, 等. 稻鸭共作及其它控草措施对稻田杂草群落的影响[J]. 应用生态学报, 2005, 16(6): 1067-1071.
      [48]
      张峥, 卜德孝, 强胜. 不同稻田综合种养模式下杂草长期控制效果的调查[J]. 植物保护学报, 2022, 49(2): 693-704.
      [49]
      SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7(1): 2856. doi: 10.1038/s41598-017-02984-7
      [50]
      NAYAK P K, NAYAK A K, PANDA B B, et al. Ecological mechanism and diversity in rice based integrated farming system[J]. Ecological Indicators, 2018, 91: 359-375. doi: 10.1016/j.ecolind.2018.04.025
      [51]
      CHAKRABORTY, CHAKRABORTY. Effect of dietary protein level on excretion of ammonia in Indian major carp, Labeo rohita, fingerlings[J]. Aquaculture Nutrition, 1998, 4(1): 47-51.
      [52]
      LAZZARI R, BALDISSEROTTO B. Nitrogen and phosphorus waste in fish farming[J]. Boletim Do Instituto De Pesca, 2008, 34(4): 591-600.
      [53]
      LI P, WU G G, LI Y J, et al. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability[J]. Geoderma, 2022, 413: 115745. doi: 10.1016/j.geoderma.2022.115745
      [54]
      REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture Ecosystems & Environment, 2023, 348: 108399.
      [55]
      钟松雄, 尹光彩, 陈志良, 等. 水稻土中砷的环境化学行为及铁对砷形态影响研究进展[J]. 土壤, 2016, 48(5): 854-862.
      [56]
      YUAN P L, WANG J P, LI C F, et al. Long-term rice-crayfish farming aggravates soil gleying and induced changes of soil iron morphology[J]. Soil Use and Management, 2022, 38(1): 757-770. doi: 10.1111/sum.12688
      [57]
      ZHANG Z, DU L S, XIAO Z Y, et al. Rice-crayfish farming increases soil organic carbon[J]. Agriculture Ecosystems & Environment, 2022, 329: 107857.
      [58]
      XU G C, LIU X, WANG Q S, et al. Integrated rice-duck farming mitigates the global warming potential in rice season[J]. Science of the Total Environment, 2017, 575: 58-66. doi: 10.1016/j.scitotenv.2016.09.233
      [59]
      CHEN Y T, LIU C H, CHEN J, et al. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment[J]. Journal of Cleaner Production, 2021, 310: 127493. doi: 10.1016/j.jclepro.2021.127493
      [60]
      FANG K K, GAO H, SHA Z M, et al. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China[J]. Agriculture Ecosystems & Environment, 2021, 308: 107235.
      [61]
      FANG K K, DAI W, CHEN H Y, et al. The effect of integrated rice-frog ecosystem on rice morphological traits and methane emission from paddy fields[J]. Science of the Total Environment, 2021, 783: 147123. doi: 10.1016/j.scitotenv.2021.147123
      [62]
      FANG K K, CHEN H Y, DAI W, et al. Microbe-mediated reduction of methane emission in rice-frog crop ecosystem[J]. Applied Soil Ecology, 2022, 174.
      [63]
      GUO L J, LIN W, CAO C G, et al. Integrated rice-crayfish farming system does not mitigate the global warming potential during rice season[J]. Science of the Total Environment, 2023, 867: 161520. doi: 10.1016/j.scitotenv.2023.161520
      [64]
      DATTA A, NAYAK D R, SINHABABU D P, et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern India[J]. Agriculture, Ecosystems & Environment, 2009, 129(1): 228-237.
      [65]
      欧茜, 熊瑞, 周文涛, 等. 稻鱼共生养鱼密度对稻田甲烷排放的影响[J]. 农业环境科学学报, 2024, 43(9): 1-12.
      [66]
      张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响[J]. 应用生态学报, 2017, 28(1): 299-307.
      [67]
      刘许辉, 张红禄, 贾青云, 等. 桂北高寒山区稻田生态种养下水稻及鱼生长试验[J]. 农业与技术, 2022, 42(16): 18-21.
      [68]
      王奇, 李妹娟, 章家恩, 等. 稻鱼共作对水稻叶绿素荧光特征及产量的影响[J]. 作物杂志, 2021(6): 145-151.
      [69]
      李艳蔷, 晏群. 稻鳅共生种养模式试验研究[J]. 中国农业资源与区划, 2018, 39(5): 54-60.
      [70]
      周江伟, 刘贵斌, 吴涛, 等. 不同种养模式对水稻根系生长和产量性状的影响[J]. 江苏农业科学, 2018, 46(13): 55-58.
      [71]
      郭天荣, 刘瑞琪, 曾晴, 等. 稻蛙种养对水稻功能叶片和籽粒养分含量及产量构成的影响[J]. 分子植物育种, 2022, 20(15): 5205-5212.
      [72]
      姚义, 张明伟, 陈京都, 等. 稻虾共作模式下不同栽插密度对丰优香占群体结构及产量的影响[J]. 江苏农业科学, 2021, 49(3): 66-71.
      [73]
      全国明, 章家恩, 杨军, 等. 稻鸭共作对稻米品质的影响[J]. 生态学报, 2008, 28(7): 3475-3483.
      [74]
      甄若宏, 王强盛, 何加骏, 等. 稻鸭共作对水稻产量和品质的影响[J]. 农业现代化研究, 2008, 29(5): 615-617.
      [75]
      陈灿, 黄璜, 郑华斌, 等. 稻田不同生态种养模式对稻米品质的影响[J]. 中国稻米, 2015, 21(2): 17-19.
      [76]
      王强盛, 黄丕生, 甄若宏, 等. 稻鸭共作对稻田营养生态及稻米品质的影响[J]. 应用生态学报, 2004, 15(4): 639-645.
      [77]
      安辉, 刘鸣达, 王厚鑫, 等. 不同稻蟹生产模式对稻蟹产量和稻米品质的影响[J]. 核农学报, 2012, 26(3): 581-586.
      [78]
      陈灿, 郑华斌, 黄璜, 等. 稻田养鳅模式对稻米品质和经济效益的影响[J]. 中国稻米, 2015, 21(4): 124-127.
      [79]
      纪力, 邵文奇, 陈富平, 等. 连年规模稻鸭共养对稻田土壤性状、稻米产量及品质的影响[J]. 中国农学通报, 2021, 37(13): 1-7.
      [80]
      张印, 余政军, 王忍, 等. 鸭品种对稻鸭共生系统土壤理化性质、水稻产量及经济效益的影响[J]. 河南农业科学, 2021, 50(12): 23-31.
      [81]
      董明辉, 顾俊荣, 李锦斌, 等. 稻虾生态种养和机插密度对优良食味粳稻产量与品质的影响[J]. 中国农学通报, 2021, 37(17): 1-12.
      [82]
      彭翔, 戴林秀, 李京咏, 等. 稻田综合种养对长江中下游地区水稻产量和稻米品质影响的文献研究[J]. 中国稻米, 2022, 28(4): 55-60.
      [83]
      王龙根, 张家宏, 谢成林, 等. 扬州市生态稻田养殖鱼产品农药残留分析研究[J]. 现代农业科技, 2016(7): 293.
      [84]
      王冬武, 何志刚, 易继华, 等. 镉污染稻田“虾稻轮作−稻鱼共生”安全利用模式试验总结[J]. 当代水产, 2023, 48(3): 64-66.
      [85]
      WANG Q, LI M J, ZHANG J E, et al. Suitable stocking density of fish in paddy field contributes positively to 2-acetyl-1-pyrroline synthesis in grain and improves rice quality[J]. Journal of the Science of Food and Agriculture, 2023, 103(10): 5126-5137. doi: 10.1002/jsfa.12597
      [86]
      XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917-1925. doi: 10.1111/gcb.13455
      [87]
      BASHIR M A, WANG H Y, SUN W T, et al. The implementation of rice-crab co-culture system to ensure cleaner rice and farm production[J]. Journal of Cleaner Production, 2021, 316: 128284. doi: 10.1016/j.jclepro.2021.128284
      [88]
      DU F L, HUA L L, ZHAI L M, et al. Rice-crayfish pattern in irrigation-drainage unit increased N runoff losses and facilitated N enrichment in ditches[J]. Science of the Total Environment, 2022, 848: 157721. doi: 10.1016/j.scitotenv.2022.157721
      [89]
      李双双, 刘卫柏, 蒋健. 农业机械化可以解决农业劳动力短缺吗?[J]. 中国农机化学报, 2024, 45(7): 316-322.
      [90]
      稻渔综合种养技术规范(通则)[J]. 中国水产, 2018(5): 81-83.
      [91]
      “十三五”中国稻渔综合种养产业发展报告[J]. 中国水产, 2022(1): 43-52.
    • Cited by

      Periodical cited type(2)

      1. 赖江连. 广西稻渔综合种养全产业链发展对策研究. 中国动物保健. 2025(02): 190-191 .
      2. 余科,安苗,欧平勇,杨胜同,王邦平,李丽,覃克斯. 黔南布依族苗族自治州稻渔综合种养技术模式及发展建议. 贵州畜牧兽医. 2025(02): 42-44 .

      Other cited types(0)

    Catalog

      Article views (1380) PDF downloads (219) Cited by(2)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return