Citation: | HU Kaijie, YU Chenglong, CHEN Jiayi, et al. Effects of biochar and Fe-modified biochar on acid buffering capacity and organic carbon fractions of lateritic red soil[J]. Journal of South China Agricultural University, 2025, 46(3): 1-10. DOI: 10.7671/j.issn.1001-411X.202408032 |
Lateritic red soil is a kind of acidic soil that covers a considerable proportion of the land in south China. Continuous soil acidification affects its physical and chemical property as well as biological characteristic, which is adverse to the maintenance of soil function as well as the accumulation and storage of soil organic carbon. Biochar addition could potentially remedy the acidified soils effectively. This study was aimed to explore the impacts of biochar and Fe-modified biochar on the acid buffering capacity and organic carbon fractions of lateritic red soil, in order to provide a scientific basis for acid soil improvement and soil carbon sequestration and enhancement.
This study focused on lateritic red soil as the research subject, with the addition of rice straw biochar and Fe-modified rice straw biochar prepared at different temperatures (300, 450, and 600 ℃). By measuring indicators such as soil pH, acid buffering capacity, total organic carbon content, aggregate organic carbon content, and dissolved organic carbon content, the effects of biochar addition on soil acid buffering capacity and organic carbon components were analyzed.
Relative to the control group , the addition of Fe-modified biochar prepared at 600 ℃ significantly increased soil pH by 14.7% and total organic carbon content by 160.5%, while that at 450 ℃ resulted in an increase in acid buffering capacity of 11.6%. Temperature and Fe-modification treatments enhanced the organic carbon contents of soil aggregates with different particle sizes in different degrees, with the greatest increase of 207.11% observed in the 0.054−0.250 mm soil aggregate. Fe-modification tended to reduce amines, hydrophobic carbon, aromatic organic matter contents, and the degree of aromaticity of soildissolved organic carbon.
Biochar addition can significantly improve lateritic soil acid buffering and carbon sequestration capacity. However, these improvement effects are influenced by biochar preparation temperature and modification treatment.
[1] |
BATJES N H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 2016, 269: 61-68. doi: 10.1016/j.geoderma.2016.01.034
|
[2] |
BOSSIO D A, COOK-PATTON S C, ELLIS P W, et al. The role of soil carbon in natural climate solutions[J]. Nature Sustainability, 2020, 3(5): 391-398. doi: 10.1038/s41893-020-0491-z
|
[3] |
WEI H, LIU Y, ZHANG J, et al. Leaching of simulated acid rain deteriorates soil physiochemical and mechanical properties in three agricultural soils[J]. Catena, 2021, 206: 105485. doi: 10.1016/j.catena.2021.105485.
|
[4] |
WEI H, LIU W, ZHANG J, et al. Effects of simulated acid rain on soil fauna community composition and their ecological niches[J]. Environmental Pollution, 2017, 220: 460-468. doi: 10.1016/j.envpol.2016.09.088
|
[5] |
郭治兴, 王静, 柴敏, 等. 近30年来广东省土壤pH值的时空变化[J]. 应用生态学报, 2011, 22(2): 425-430.
|
[6] |
江军, 曹楠楠, 俞梦笑, 等. 酸性森林土壤缓冲酸沉降关键机理研究进展[J]. 热带亚热带植物学报, 2019, 27(5): 491-499. doi: 10.11926/jtsb.4086
|
[7] |
YANG J, WEI H, ZHANG J, et al. Land use and soil type exert strongly interactive impacts on the pH buffering capacity of acidic soils in South China[J]. Sustainability, 2022, 14(19): 12891. doi: 10.3390/su141912891.
|
[8] |
QIAN S, ZHOU X, FU Y, et al. Biochar-compost as a new option for soil improvement: Application in various problem soils[J]. Science of the Total Environment, 2023, 870: 162024. doi: 10.1016/j.scitotenv.2023.162024.
|
[9] |
KHAN S, IRSHAD S, MEHMOOD K, et al. Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review[J]. Plants (Basel), 2024, 13(2): 166. doi: 10.3390/plants13020166.
|
[10] |
廉辰, 于嘉佳, 高婷, 等. 3种壳类生物质炭对南方红壤理化性质的动态影响[J]. 华南农业大学学报, 2022, 43(1): 20-27. doi: 10.7671/j.issn.1001-411X.202010019
|
[11] |
宋佩佩, 马文静, 王军, 等. 铁改性生物炭的制备及其在重金属污染土壤修复技术中的应用进展[J]. 环境工程学报, 2022, 16(12): 4018-4036. doi: 10.12030/j.cjee.202201170
|
[12] |
CHEN M, WU L, DING X, et al. Fe-modified biochar improved the stability of soil aggregates and organic carbon: Evidence from enzymatic activity and microbial composition[J]. Land Degradation & Development, 2024, 35(2): 732-743.
|
[13] |
GILLINGHAM M D, GOMES R L, FERRARI R, et al. Sorption, separation and recycling of ammonium in agricultural soils: A viable application for magnetic biochar?[J]. Science of the Total Environment, 2022, 812: 151440. doi: 10.1016/j.scitotenv.2021.151440.
|
[14] |
刘俊杰, 严晓斌, 张美怡, 等. 中国农作物秸秆资源产量分布及利用分析[J/OL]. (2024-06-17) [2024-08-27]. https://doi.org/10.13254/j.jare.2024.0184. 农业资源与环境学报, 2024.
|
[15] |
WANG L, LI Z, WANG Y, et al. Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects[J]. Science of the Total Environment, 2021, 750: 141672. doi: 10.1016/j.scitotenv.2020.141672.
|
[16] |
YI Y, HUANG Z, LU B, et al. Magnetic biochar for environmental remediation: A review[J]. Bioresource Technology, 2020, 298: 122468. doi: 10.1016/j.biortech.2019.122468.
|
[17] |
中国林业科学院林产化学工业研究所. 木炭和木炭试验方法: GB/T 17664—1999[S]. 北京: 中国标准出版社, 1999.
|
[18] |
NELSON P N, SU N. Soil pH buffering capacity: A descriptive function and its application to some acidic tropical soils[J]. Australian Journal of Soil Research, 2010, 48(3): 201-207. doi: 10.1071/SR09150
|
[19] |
李彬彬, 武兰芳, 许艳艳, 等. 秸秆还田土壤溶解性有机碳的官能团特征及其与CO2排放的关系[J]. 农业环境科学学报, 2017, 36(12): 2535-2543. doi: 10.11654/jaes.2017-0747
|
[20] |
JAFFRAIN J, GÉRARD F, MEYER M, et al. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil Science Society of America Journal, 2007, 71(6): 1851-1858. doi: 10.2136/sssaj2006.0202
|
[21] |
WANG L Y, WU F C, ZHANG R Y, et al. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau[J]. Journal of Environmental Sciences, 2009, 21(5): 581-588. doi: 10.1016/S1001-0742(08)62311-6
|
[22] |
WANG L, CHEN H, WU J, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil[J]. Journal of Hazardous Materials, 2021, 414: 125494. doi: 10.1016/j.jhazmat.2021.125494.
|
[23] |
ULRICH B. Soil acidity and its relations to acid deposition[M]//ULRICH B, PANKRATH J. Effects of accumulation of air pollutants in forest ecosystems. Proceedings of a workshop held at Göttingen, West Germany, May 16-18, 1982. Dordrecht: Springer Netherlands, 1983: 127-146.
|
[24] |
RAZA S, MIAO N, WANG P, et al. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands[J]. Global Change Biology, 2020, 26(6): 3738-3751. doi: 10.1111/gcb.15101
|
[25] |
WEI H, YANG J, LIU Z, et al. Data integration analysis indicates that soil texture and pH greatly influence the acid buffering capacity of global surface soils[J]. Sustainability, 2022, 14(5): 3017. doi: 10.3390/su14053017.
|
[26] |
黄清扬, 徐仁扣, 俞元春. 不同产地油菜秸秆制备的生物质炭对红壤酸度和土壤pH缓冲容量的影响[J]. 土壤通报, 2022, 53(4): 821-827.
|
[27] |
袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417. doi: 10.11674/zwyf.14539
|
[28] |
刘鑫裕, 王冬梅, 张泽洲, 等. 生物炭配施磷肥对土壤养分、酶活性及紫花苜蓿养分吸收的影响[J]. 环境科学, 2023, 44(7): 4162-4169.
|
[29] |
BLANCO-CANQUI H, LAIRD D A, HEATON E A, et al. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming[J]. Global Change Biology Bioenergy, 2020, 12(4): 240-251. doi: 10.1111/gcbb.12665
|
[30] |
MOORE O W, CURTI L, WOULDS C, et al. Long-term organic carbon preservation enhanced by iron and manganese[J]. Nature, 2023, 621(7978): 312-317. doi: 10.1038/s41586-023-06325-9
|
[31] |
徐艺萍, 饶越悦, 孟艳, 等. 免耕对农田土壤团聚体的影响研究: Meta分析[J]. 环境科学, 2024, 45(2): 952-960.
|
[32] |
庞津雯, 王钰皓, 陶宏扬, 等. 生物炭不同添加量对旱作覆膜农田土壤团聚体特性及有机碳含量的影响[J]. 中国农业科学, 2023, 56(9): 1729-1743. doi: 10.3864/j.issn.0578-1752.2023.09.010
|
[33] |
高尚志, 刘日月, 窦森, 等. 不同施量生物炭对土壤团聚体及其有机碳含量的影响[J]. 吉林农业大学学报, 2022, 44(4): 421-430.
|
[34] |
谭文峰, 许运, 史志华, 等. 胶结物质驱动的土壤团聚体形成过程与稳定机制[J]. 土壤学报, 2023, 60(5): 1297-1308. doi: 10.11766/trxb202308060312
|
[35] |
宋旭昕, 刘同旭. 土壤铁矿物形态转化影响有机碳固定研究进展[J]. 生态学报, 2021, 41(20): 7928-7938.
|