Citation: | DOU Zhi, ZHANG Yaoyuan, GUO Wei, et al. Research progress on the influence of integrated farming of rice and aquatic animal on soil and rice[J]. Journal of South China Agricultural University, 2024, 45(6): 836-845. DOI: 10.7671/j.issn.1001-411X.202408002 |
Due to considerable economic benefits and green and high quality agricultural products, the integrated farming of rice and aquatic animal, with the scale rapidly expanding and the model continuously enriched in the past decade, has become an important rice cropping system in China. Soil quality and rice yield level of the integrated farming of rice and aquatic animal have always been the focus issues for the government and researchers. This article reviewed the impact of integrated farming of rice and aquatic animal on soil properties and rice productivity, and put forward the research prospect of integrated farming of rice and aquatic animal in order to provide a reference for maintaining soil health and stabilizing rice yield under integrated farming of rice and aquatic animals, and there by promoting high-quality development of the industry integrated farming of rice and aquatic animal.
[1] |
AHMED N, TURCHINI G M. The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production[J]. Sustainability Science, 2021, 16(4): 1375-1390. doi: 10.1007/s11625-021-00924-z
|
[2] |
XU Q, LIU T, GUO H L, et al. Conversion from rice-wheat rotation to rice-crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China[J]. Journal of Cleaner Production, 2021, 319: 128883. doi: 10.1016/j.jclepro.2021.128883
|
[3] |
ISLAM A H M S, BARMAN B K, MURSHEDEJAHAN K M. Adoption and impact of integrated rice-fish farming system in Bangladesh[J]. Aquaculture, 2015, 447: 76-85. doi: 10.1016/j.aquaculture.2015.01.006
|
[4] |
JIANG Y, CAO C G. Crayfish-rice integrated system of production: an agriculture success story in China: A review[J]. Agronomy for Sustainable Development, 2021, 41(5): 68. doi: 10.1007/s13593-021-00724-w
|
[5] |
XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): e1381-e1387.
|
[6] |
BAO J, JIANG H, LI X. Thirty years of rice-crab coculture in China: Research progress and prospects[J]. Reviews in Aquaculture, 2022, 14(3): 1597-1612. doi: 10.1111/raq.12664
|
[7] |
于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[R]. 北京: 全国水产技术推广总站, 2023.
|
[8] |
唐建军, 李巍, 吕修涛, 等. 中国稻渔综合种养产业的发展现状与若干思考[J]. 中国稻米, 2020, 26(5): 1-10. doi: 10.3969/j.issn.1006-8082.2020.05.001
|
[9] |
SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7(1): 2856. doi: 10.1038/s41598-017-02984-7
|
[10] |
赖政, 肖力婷, 赖胜, 等. 稻虾种养新模式对稻田土壤肥力和微生物群落结构的影响[J]. 土壤学报, 2023, 60(6): 1788-1798.
|
[11] |
YUAN P L, WANG J P, LI C F, et al. Soil quality indicators of integrated rice-crayfish farming in the Jianghan Plain, China using a minimum data set[J]. Soil and Tillage Research, 2020, 204: 104732. doi: 10.1016/j.still.2020.104732
|
[12] |
蔡晨, 李谷, 朱建强, 等. 稻虾轮作模式下江汉平原土壤理化性状特征研究[J]. 土壤学报, 2019, 56(1): 217-226.
|
[13] |
WU B L, CHEN J, HUANG L, et al. Dynamics of soil fertility and microbial community response to stocking density in rice-turtle co-culture[J]. Aquaculture Reports, 2021, 20: 100765. doi: 10.1016/j.aqrep.2021.100765
|
[14] |
刘晏君, 吕卫光, 白娜玲, 等. 稻鳝生态种养不同施肥处理对土壤理化及微生物性状的影响[J]. 土壤通报, 2023, 54(6): 1384-1391.
|
[15] |
SUN L N, CHEN S, CHAO L, et al. Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79: 514-518. doi: 10.1007/s00128-007-9274-8
|
[16] |
贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展[J]. 农业环境科学学报, 2016, 35(12): 2260-2268.
|
[17] |
朱丹妹, 刘岩, 张丽, 等. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 2017, 36(8): 1508-1517.
|
[18] |
刘杰云, 张文正, 沈健林, 等. 水分管理及生物质炭对稻田土壤含水率及pH值的影响[J]. 灌溉排水学报, 2021, 40(7): 44-50.
|
[19] |
孙瑞莲, 朱鲁生, 赵秉强, 等. 长期施肥对土壤微生物的影响及其在养分调控中的作用[J]. 应用生态学报, 2004, 15(10): 1907-1910.
|
[20] |
BERNER A, HILDERMANN I, FLIESSBACH A, et al. Crop yield and soil quality response to reduced tillage under organic management[J]. Soil and Tillage Research, 2008, 101(1/2): 89-96. doi: 10.1016/j.still.2008.07.012
|
[21] |
尹春梅, 谢小立. 灌溉模式对红壤稻田土壤环境及水稻产量的影响[J]. 农业工程学报, 2010, 26(6): 26-31. doi: 10.3969/j.issn.1002-6819.2010.06.005
|
[22] |
KARLEN D L, KOVAR J L, CAMBARDELLA C A, et al. Thirty-year tillage effects on crop yield and soil fertility indicators[J]. Soil and Tillage Research, 2013, 130: 24-41. doi: 10.1016/j.still.2013.02.003
|
[23] |
HUANG L H, LIANG Z, SUAREZ D L, et al. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in northeast China[J]. The Journal of Agricultural Science, 2016, 154: 632-646. doi: 10.1017/S002185961500057X
|
[24] |
朱杰, 刘海, 吴邦魁, 等. 稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响[J]. 中国生态农业学报, 2018, 26(9): 1324-1332.
|
[25] |
HUANG F, YANG S, NIE X B, et al. Effects of different nitrogen types on nitrogen use efficiency, field water quality, and soil microbial community in the rice-crayfish co-culture system[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2741-2754. doi: 10.1007/s42729-023-01231-5
|
[26] |
ARUNRAT N, SANSUPA C, KONGSURAKAN P, et al. Soil microbial diversity and community composition in rice-fish co-culture and rice monoculture farming system[J]. Biology, 2022, 11(8): 1242. doi: 10.3390/biology11081242
|
[27] |
TENG Q, HU X F, LUO F, et al. Influences of introducing frogs in the paddy fields on soil properties and rice growth[J]. Journal of Soils and Sediments, 2016, 16: 51-61. doi: 10.1007/s11368-015-1183-6
|
[28] |
LIN K M, WU J P. Effect of introducing frogs and fish on soil phosphorus availability dynamics and their relationship with rice yield in paddy fields[J]. Scientific Reports, 2020, 10(1): 21. doi: 10.1038/s41598-019-56644-z
|
[29] |
ZHANG J, HU L L, REN W Z, et al. Rice-soft shell turtle coculture effects on yield and its environment[J]. Agriculture Ecosystems & Environment, 2016, 224: 116-122.
|
[30] |
喻记新, 李为, 刘家寿, 等. 稻虾综合种养对稻田土壤肥力和金属元素含量的影响[J]. 水产学报, 2021, 45(3): 453-461.
|
[31] |
董稳军, 徐培智, 张仁陟, 等. 土壤改良剂对冷浸田土壤特性和水稻群体质量的影响[J]. 中国生态农业学报, 2013, 21(7): 810-816.
|
[32] |
郭乾坤, 梁国庆, 周卫, 等. 长期有机培肥提高红壤性水稻土生物学特性及水稻产量的微生物学机制[J]. 植物营养与肥料学报, 2020, 26(3): 492-501. doi: 10.11674/zwyf.19450
|
[33] |
WANG Q S, YU K L, ZHANG H. Controlled-release fertilizer improves rice matter accumulation characteristics and yield in rice-crayfish coculture[J]. Agriculture, 2022, 12(10): 1674. doi: 10.3390/agriculture12101674
|
[34] |
ZHAO Z, CHU C B, ZHOU D P, et al. Soil bacterial community composition in rice-fish integrated farming systems with different planting years[J]. Scientific Reports, 2021, 11(1): 10855. doi: 10.1038/s41598-021-90370-9
|
[35] |
ZHANG Y, CHEN M, ZHAO Y Y, et al. Destruction of the soil microbial ecological environment caused by the over-utilization of the rice-crayfish co-cropping pattern[J]. Science of the Total Environment, 2021, 788: 147794. doi: 10.1016/j.scitotenv.2021.147794
|
[36] |
WU Y Y, LI Y, NIU L H, et al. Nutrient status of integrated rice-crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields[J]. Science of the Total Environment, 2022, 836: 155706. doi: 10.1016/j.scitotenv.2022.155706
|
[37] |
ZHANG C M, MI W J, XU Y Z, et al. Long-term integrated rice-crayfish culture disrupts the microbial communities in paddy soil[J]. Aquaculture Reports, 2023, 29: 101515. doi: 10.1016/j.aqrep.2023.101515
|
[38] |
刘鸣达, 安辉, 王厚鑫, 等. 不同稻蟹生产模式效益比较的初步研究[J]. 中国土壤与肥料, 2009(1): 53-56. doi: 10.3969/j.issn.1673-6257.2009.01.014
|
[39] |
陈晓云, 孙文涛, 于凤泉, 等. 稻蟹生态种养模式对稻田土壤肥力及生产效益的影响[J]. 土壤通报, 2021, 52(5): 1165-1172.
|
[40] |
胡亮亮, 唐建军, 张剑, 等. 稻−鱼系统的发展与未来思考[J]. 中国生态农业学报, 2015, 23(3): 268-275.
|
[41] |
曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9): 1245-1253.
|
[42] |
DOU Z, MI C S, LU H K, et al. Insights from farmers’ rice culture practices under integrated rice-crayfish farming system in the Hongze Lake District of China[J]. Agriculture, 2023, 13(12): 2229. doi: 10.3390/agriculture13122229
|
[43] |
朱德峰, 张玉屏, 陈惠哲, 等. 中国水稻栽培技术发展与展望[J]. 中国稻米, 2021, 27(4): 45-49. doi: 10.3969/j.issn.1006-8082.2021.04.009
|
[44] |
金军, 薛艳凤, 于林惠, 等. 水稻不同种植方式群体质量差异比较[J]. 中国稻米, 2006, 12(6): 31-33. doi: 10.3969/j.issn.1006-8082.2006.06.017
|
[45] |
李杰, 张洪程, 龚金龙, 等. 不同种植方式对超级稻植株抗倒伏能力的影响[J]. 中国农业科学, 2011, 44(11): 2234-2243. doi: 10.3864/j.issn.0578-1752.2011.11.004
|
[46] |
张荣萍, 马均, 王贺正, 等. 不同灌水方式对水稻生育特性及水分利用率的影响[J]. 中国农学通报, 2005, 21(9): 144-150. doi: 10.3969/j.issn.1000-6850.2005.09.042
|
[47] |
徐芬芬, 曾晓春, 石庆华, 等. 不同灌溉方式对水稻根系生长的影响[J]. 干旱地区农业研究, 2007, 25(1): 102-104.
|
[48] |
ZHANG H, XUE Y G, WANG Z Q, et al. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice[J]. Crop Science, 2009, 49(6): 2246-2260. doi: 10.2135/cropsci2009.02.0099
|
[49] |
杨建昌, 张建华. 水稻高产节水灌溉[M]. 北京: 科学出版社, 2021.
|
[50] |
凌启鸿. 水稻精确定量栽培理论与技术[M]. 北京: 中国农业出版社, 2007.
|
[51] |
OHE M, OKITA N, DAIMON H. Effects of deep-flooding irrigation on growth, canopy structure and panicle weight yield under different planting patterns in rice[J]. Plant Production Science, 2010, 13(2): 193-198. doi: 10.1626/pps.13.193
|
[52] |
YANG J C, ZHANG J H. Crop management techniques to enhance harvest index in rice[J]. Journal of Experimental Botany, 2010, 61: 3177-3189. doi: 10.1093/jxb/erq112
|
[53] |
CHAPAGAIN T, RISEMAN A, YAMAJI E. Achieving more with less water: Alternate wet and dry irrigation (AWDI) as an alternative to the conventional water management practices in rice farming[J]. Journal of Agricultural Science, 2011, 3(3): 3.
|
[54] |
ROTHUIS A J, VROMANT N, XUAN V T, et al. The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded rice-fish culture[J]. Aquaculture, 1999, 172(3/4): 255-274.
|
[55] |
丁伟华, 李娜娜, 任伟征, 等. 传统稻鱼系统生产力提升对稻田水体环境的影响[J]. 中国生态农业学报, 2013, 21(3): 308-314.
|
[56] |
周榆淇, 邹冬生, 王安岽, 等. 长期淹水条件下稻鱼复合种养对土壤养分和酶活性的影响[J]. 农业现代化研究, 2022, 43(5): 911-920.
|
[57] |
YUAN P L, LI X H, NI M L, et al. Effects of straw return and feed addition on the environment and nitrogen use efficiency under different nitrogen application rates in the rice-crayfish system[J]. Plant and Soil, 2022, 475(1): 411-426.
|
[58] |
龙瑞平, 杨兆春, 穆家伟, 等. 稻鱼共作下氮肥减量后移对水稻生长和氮肥利用效率的影响[J]. 土壤, 2022, 54(4): 708-714.
|
[59] |
徐涛, 刘方平, 倪才英, 等. 稻鳖共生体系中不同施肥类型对水稻产量和品质的影响[J]. 江苏农业科学, 2021, 49(14): 61-65.
|
[60] |
倪明理, 邓凯, 张文宇, 等. 稻虾种养对水稻产量和粮食安全的影响[J]. 中国生态农业学报, 2022, 30(8): 1293-1300.
|
[61] |
吴雪, 谢坚, 陈欣, 等. 稻鱼系统中不同沟型边际弥补效果及经济效益分析[J]. 中国生态农业学报, 2010, 18(5): 995-999.
|
[62] |
唐建军, 陈欣, 胡亮亮, 等. 稻渔共生生态系统中沟坑问题与最大允许沟宽的推算及应用[J]. 中国水产, 2021(4): 58-61.
|
[63] |
HU L L, ZHANG J, REN W Z, et al. Can the co-cultivation of rice and fish help sustain rice production?[J]. Scientific Reports, 2016, 6(1): 28728. doi: 10.1038/srep28728
|
[64] |
国家市场监督管理总局, 国家标准化管理委员会. 稻渔综合种养通用技术要求: GB/T 43508—2023[S]. 北京: 中国标准出版社, 2023: 1-2.
|
[65] |
TSURUTA T, YAMAGUCHI M, ABE S, et al Effect of fish in rice-fish culture on the rice yield[J]. Fisheries Science, 2011, 77(1): 95-106.
|
[66] |
徐敏, 马旭洲, 王武. 稻蟹共生系统水稻栽培模式对水稻和河蟹的影响[J]. 中国农业科学, 2014, 47(9): 1828-1835. doi: 10.3864/j.issn.0578-1752.2014.09.018
|
[67] |
丁伟华. 中国稻田水产养殖的潜力和经济效益分析[D]. 杭州: 浙江大学, 2014.
|
[68] |
张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响[J]. 应用生态学报, 2017, 28(1): 299-307.
|
[69] |
彭成林, 袁家富, 贾平安, 等. 长期稻虾共作模式对不同施氮量下直播水稻产量和氮肥利用效率的影响[J]. 河南农业科学, 2020, 49(4): 15-21.
|
[70] |
谷婕, 吴涛, 王忍, 等. 稻鱼生态系统对水稻产量及其构成因素的影响[J]. 作物研究, 2019, 33(5): 378-381.
|
[71] |
朱练峰, 房伟平, 庄雪浩, 等. 稻蛙共作对土壤理化特性和水稻产量的影响[J]. 中国稻米, 2023, 29(5): 23-27. doi: 10.3969/j.issn.1006-8082.2023.05.005
|
[72] |
VROMANT N, DUONG L T, OLLEVIER F. Effect of fish on the yield and yield components of rice in integrated concurrent rice-fish system[J]. Journal of Agricultural Science, 2002, 138(1): 63-71. doi: 10.1017/S0021859601001642
|
[73] |
车阳, 程爽, 田晋钰, 等. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953-1965.
|
[74] |
GAO H, LI Y Y, ZHOU Y C, et al. Influence of mechanical transplanting methods and planting geometry on grain yield and lodging resistance of Indica rice Taoyouxiangzhan under rice-crayfish rotation system[J]. Agronomy, 2022, 12(5): 1029. doi: 10.3390/agronomy12051029
|
[75] |
李伟晶, 王洪媛, 张怡彬, 等. 稻蟹共生对稻田病草害和水稻产量的影响[J]. 湖北农业科学, 2023, 62(9): 64-69.
|
[76] |
SONG J H, WANG Y, CHEN L R, et al. Higher relative humidity and more moderate temperatures increase the severity of rice false smut disease in the rice-crayfish coculture system[J]. Food and Energy Security, 2022, 11(1): e323. doi: 10.1002/fes3.323
|
[77] |
郭瑶, 肖求清, 曹凑贵, 等. 稻虾共作对稻田杂草群落组成及物种多样性的影响[J]. 华中农业大学学报, 2020, 39(2): 17-24.
|
[78] |
CHAUHAN B. Weed ecology and weed management strategies for dry-seeded rice in Asia[J]. Weed Technology, 2012, 26(1): 1-13. doi: 10.1614/WT-D-11-00105.1
|
[79] |
JURAIMI A S, AHMAD HAMDANI M S, ANUAR A R, et al. Effect of water regimes on germination of weed seeds in a Malaysian rice field[J]. Australian Journal of Crop Science, 2012, 6(4): 598-605.
|
[80] |
史骏, 陈若霞, 谌江华, 等. 苗期水分管理对水稻分蘖及除草剂控草效应的影响[J]. 植物保护, 2022, 48(3): 299-304.
|
[81] |
曹凑贵, 蔡明历. 稻田种养生态农业模式与技术[M]. 北京: 科学出版社, 2010.
|
[82] |
朱元宏, 王新其, 姚洁, 等. 晚粳水稻新品种在蛙稻生态种养模式下的种植表现研究[J]. 现代农业科技, 2014, 11: 26-28.
|
[83] |
陈秀晨, 白一松, 王士梅, 等. 适宜稻原鳖共生模式的水稻品种筛选研究[J]. 湖北农业科学, 2018, 57(6): 29-30.
|
[84] |
唐茂艳, 王强, 陈雷, 等. 适合稻鱼系统的水稻品种筛选研究[J]. 中国稻米, 2019, 25(3): 129-131,134.
|
[85] |
吴芸紫, 张华, 谢磊, 等. 20个水稻品种稻虾栽培比较试验结果及评价[J]. 湖北农业科学, 2021, 60(10): 15-17.
|
[86] |
LI M J, HU X Y, HU R, et al. Evaluating rice varieties for suitability in a rice-fish co-culture system based on lodging resistance and grain yield[J]. Agronomy, 2023, 13(9): 2392. doi: 10.3390/agronomy13092392
|
[87] |
XU Q, DAI L X, SHANG Z Y, et al. Application of controlled-release urea to maintain rice yield and mitigate greenhouse gas emissions of rice-crayfish coculture field[J]. Agriculture, Ecosystems & Environment, 2023, 344: 108312.
|