• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Tianpei, WANG Xiaochan, SHI Yinyan, et al. Evaluation and analysis of comprehensive benefits of aquaponics technology in Jiangning District, Nanjing City[J]. Journal of South China Agricultural University, 2024, 45(6): 966-974. DOI: 10.7671/j.issn.1001-411X.202406045
Citation: LI Tianpei, WANG Xiaochan, SHI Yinyan, et al. Evaluation and analysis of comprehensive benefits of aquaponics technology in Jiangning District, Nanjing City[J]. Journal of South China Agricultural University, 2024, 45(6): 966-974. DOI: 10.7671/j.issn.1001-411X.202406045

Evaluation and analysis of comprehensive benefits of aquaponics technology in Jiangning District, Nanjing City

More Information
  • Received Date: June 26, 2024
  • Available Online: September 22, 2024
  • Published Date: September 24, 2024
  • Objective 

    Aquaponics technology combines the advantages of aquaculture and crop cultivation, featuring high nitrogen conversion utilization ratio as well as water saving and emission reduction, realizing a win-win situation for both economic and environmental benefits, but aquaponics system involves many economic and environmental indicators, and there are fewer current studies on comprehensive benefit evaluation of this production model. In this study, the environmental and economic benefits of aquaponics systems were quantitatively analyzed, systematically evaluated and compared, with a view to providing new ideas for qualitative and quantitative analyses and research on aquaponics technology.

    Method 

    Based on the actual construction and operation data of the aquaponics farm in Jiangning District of Nanjing City, this study took environmental and economic benefits as two main evaluation indexes, calculated nitrogen emission of the single aquaculture mode as well as related nitrogen loss and nitrogen transformation in the aquaponics through the empirical formula method, qualitatively and quantitatively calculated nitrogen transformation and emission of the aquaponics system through the measurement method, and calculated the economic indexes of the aquaponics system based on the questionnaire of the farm and the results of the research.

    Result 

    After adopting aquaponics technology, the total nitrogen emission was reduced by 99.45% and the total ammonia nitrogen emission was reduced by 99.73% compared with the single aquaculture mode; N2O emission and microbial assimilation caused more nitrogen loss, were 4.58 and 48.60 times more than total nitrogen emission in water, respectively; The degradation of NO2-N by nitrifying bacteria was enhanced, the water quality was more conducive to the survival of fish. In the first year of aquaponics farm, the construction cost accounted for 55.21%, which exceeded the sum of other expenditures. Feed cost was the main source of cost when running the aquaponics farm, accounting for 73.96%. Aquaculture income accounted for 89.74% of the total income, which was 8.75 times more than the sum of planting income and service income.

    Conclusion 

    This study establishes the scientific comprehensive benefit evaluation system of aquaponics, which has certain guiding significance for the evaluation of ecological and economic benefits of aquaponics technology, and can provide multi-dimensional references for the research and application of aquaponics technology.

  • [1]
    赵思琪, 丁为民. 水产养殖精准投喂关键技术研究进展[J]. 智能化农业装备学报(中英文), 2023, 4(1): 42-53.
    [2]
    SCHNEIDER O, SERETI V, EDING E H, et al. Analysis of nutrient flows in integrated intensive aquaculture systems[J]. Aquacultural Engineering, 2005, 32(3/4): 379-401.
    [3]
    生态环境部, 国家统计局, 农业农村部. 第二次全国污染源普查公报[EB/OL]. (2020-06-09) [2024-06-27]. https://www.gov.cn/xinwen/2020-06/10/content_5518391.htm.
    [4]
    李天沛, 汪小旵, 丁为民, 等. 鱼菜共生系统中不同种类蔬菜对养殖尾水氮素转化的影响[J]. 农业工程学报, 2022, 38(9): 247-252. doi: 10.11975/j.issn.1002-6819.2022.09.027
    [5]
    周怀兵, 周德龙. 南京市江宁区高效设施农业发展举措[J]. 长江蔬菜, 2020(5): 4-6.
    [6]
    蔡淑芳, 陈敏, 陈永快, 等. 种植密度对鱼菜共生系统氮素转化的影响[J]. 农业工程学报, 2019, 35(4): 132-137. doi: 10.11975/j.issn.1002-6819.2019.04.016
    [7]
    郑广智, 张珊, 郭海涛, 等. 物联网和PLC技术在鱼菜共生系统中的应用[J]. 中国农学通报, 2021, 37(30): 133-138. doi: 10.11924/j.issn.1000-6850.casb2020-0239
    [8]
    徐琰斐, 单建军, 顾川川, 等. 菜−鱼复合设施种养系统构建与运行试验分析[J]. 农业工程学报, 2023, 39(2): 150-156. doi: 10.11975/j.issn.1002-6819.202210085
    [9]
    LOBANOV V, DE VRIEZE J, JOYCE A. Simultaneous biomethane production and nutrient remineralization from aquaculture solids[J]. Aquacultural Engineering, 2023, 101: 102328. doi: 10.1016/j.aquaeng.2023.102328
    [10]
    KEESMAN K J, KÖRNER O, WAGNER K, et al. Aquaponics systems modelling[M]//Aquaponics food production systems. Cham: Springer International Publishing, 2019: 267-299.
    [11]
    ZHU Z, YOGEV U, GODDEK S, et al. Carbon dynamics and energy recovery in a novel near-zero waste aquaponics system with onsite anaerobic treatment[J]. Science of the Total Environment, 2022, 833: 155245. doi: 10.1016/j.scitotenv.2022.155245
    [12]
    杨思宇, 朱浩辰, 刘友晴, 等. 鱼菜共生发展与经济效益分析[J]. 养殖与饲料, 2021, 20(10): 64-66. doi: 10.3969/j.issn.1671-427X.2021.10.023
    [13]
    蔡淑芳, 刘现, 王涛, 等. 鱼菜共生系统经济可行性研究进展[J]. 江苏农业科学, 2019, 47(5): 5-8.
    [14]
    大连市环境监测中心, 天津市环境监测中心, 辽宁省环境监测实验中心, 等. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012.
    [15]
    沈阳市环境监测中心站. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535—2009[S]. 北京: 中国环境科学出版社, 2009.
    [16]
    湖北省环境监测中心. 水质 亚硝酸盐氮的测定 分光光度法: GB/T 7493—1987[S]. 北京: 国家环境保护局, 1987.
    [17]
    国家环境保护总局水和废水监测分析方法编委会, 中国环境监测总站. 水质 硝酸盐氮的测定 紫外分光光度法(试行): HJ/T 346—2007[S]. 北京: 中国环境科学出版社, 2007.
    [18]
    BÓRQUEZ-LOPEZ R A, CASILLAS-HERNANDEZ R, LOPEZ-ELIAS J A, et al. Improving feeding strategies for shrimp farming using fuzzy logic, based on water quality parameters[J]. Aquacultural Engineering, 2018, 81: 38-45. doi: 10.1016/j.aquaeng.2018.01.002
    [19]
    TACON A G J, FORSTER I P. Aquafeeds and the environment: Policy implications[J]. Aquaculture, 2003, 226(1/2/3/4): 181-189.
    [20]
    MARTINEZ-PORCHAS M, MARTINEZ-CORDOVA L R. World aquaculture: Environmental impacts and troubleshooting alternatives[J]. Scientific World Journal, 2012: 389623.
    [21]
    EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1/2/3/4): 346-358.
    [22]
    HU Z, LEE J W, CHANDRAN K, et al. Effect of plant species on nitrogen recovery in aquaponics[J]. Bioresource Technology, 2015, 188: 92-98. doi: 10.1016/j.biortech.2015.01.013
    [23]
    WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4): 1027-1037. doi: 10.1016/j.watres.2011.11.080
    [24]
    LU H, CHANDRAN K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors[J]. Biotechnology and Bioengineering, 2010, 106(3): 390-398. doi: 10.1002/bit.22704
    [25]
    ZOU Y, HU Z, ZHANG J, et al. Effects of pH on nitrogen transformations in media-based aquaponics[J]. Bioresource Technology, 2016, 210: 81-87. doi: 10.1016/j.biortech.2015.12.079
    [26]
    HU Z, LEE J W, CHANDRAN K, et al. Nitrous oxide (N2O) emission from aquaculture: A review[J]. Environmental Science & Technology, 2012, 46: 6470-6480.
    [27]
    HARGREAVES J A. Nitrogen biogeochemistry of aquaculture ponds[J]. Aquaculture, 1998, 166(3/4): 181-212.
    [28]
    FINK M, FELLER C. An empirical model for describing growth and nitrogen uptake of white cabbage (Brassica oleracea var. capitata)[J]. Scientia Horticulturae, 1998, 73(2/3): 75-88.
    [29]
    贺志文. 水培生菜吸氮模型构建与营养液氮素调控研究[D]. 晋中: 山西农业大学, 2018.
    [30]
    李响. 玉米加工污水灌溉对油菜生长的影响[D]. 长春: 吉林大学, 2015.
    [31]
    王齐龙. 减氮配施钙、镁、硼、钼对几种蔬菜产量和品质的影响[D]. 佛山: 佛山科学技术学院, 2020.
    [32]
    徐跑. 中国稻鱼综合种养的发展与展望[J]. 大连海洋大学学报, 2021, 36(5): 717-726.
    [33]
    李天沛, 汪小旵, 施印炎, 等. 鱼菜共生技术及其系统装备的研究现状与展望[J/OL]. 南京农业大学学报 (2024-06-14) [2024-06-27]. http://kns.cnki.net/kcms/detail/32.1148.S.20240613.1725.004.html.
  • Cited by

    Periodical cited type(19)

    1. 钱卫星,郑东. 动态环境监测系统的设计. 集成电路应用. 2024(03): 186-187 .
    2. 陈雄,罗海波. 碳汇渔业贝类养殖监测管理系统的设计与开发. 闽江学院学报. 2024(05): 51-58 .
    3. 罗潜,吉艺宽,李美娣. 基于STM32和ZigBee的水产养殖水质监测系统设计. 仪器仪表用户. 2023(08): 22-26 .
    4. 杨智玲,程玮. 基于无人机遥感技术的渔业养殖池塘水质监测方法. 太原师范学院学报(自然科学版). 2023(02): 35-40 .
    5. 余钱程,管延敏,黄温赟,韦龙,虞嘉晨. 基于STM32与树莓派的养殖水质监测无人艇系统研究. 渔业现代化. 2023(05): 33-42 .
    6. 林盾,怀晓伟,宁睿. 面向电网基建现场的LoRa通信低功耗组网控制技术的优化设计. 自动化应用. 2023(22): 73-75 .
    7. 杨智玲. 无人机技术在水产养殖作业通信系统中的应用. 长江信息通信. 2022(04): 1-3 .
    8. 孔兵,余梅,乔欣. 基于LoRa无线通信的水产养殖水质监测系统设计. 滨州学院学报. 2022(02): 74-80 .
    9. 任晓亮,施羽露,廖河庭,杨晓曦,钱信宇,郑尧,陈家长. 水产环境污染现状及治理策略. 农学学报. 2022(05): 42-46 .
    10. 闫尉深,刘威,刘家俊,李志达. 基于无线技术的隧道积水监测系统设计. 电子设计工程. 2022(14): 137-141 .
    11. 李阳东,漆林,笪亨融,谢洋洋. 基于物联网的近海岸水质监测平台方案设计. 海岸工程. 2022(03): 268-276 .
    12. 康晋. 基于LoRa无线通信的工业机器人远程监控系统设计. 计算机测量与控制. 2022(09): 119-124+132 .
    13. 肖军. 基于无线通信技术的医院信息管理系统设计. 自动化技术与应用. 2022(11): 107-111 .
    14. 巫鹏航,王锦鹏,朱敬宾,郭来功. 基于STM32与LabVIEW的地下水压水温监测系统设计. 长春师范大学学报. 2021(04): 43-47 .
    15. 覃伟锋,郝文杰,莫胜胜,龙应萍,蔡世媚,范嘉晨. 基于云服务的水产养殖水质监测系统. 电子制作. 2021(10): 30-32 .
    16. 胡颖,徐轶群. 基于窄带物联网通信的海洋水质监测系统设计. 广州航海学院学报. 2021(02): 14-19 .
    17. 谭明,曾海涛,王田. 基于无线通信的换流阀冷却塔温度监测系统设计. 电工技术. 2021(12): 8-9+12 .
    18. 颜瑞,王震,李言浩,李哲敏,李娴. 中国农业智能传感器的应用、问题与发展. 农业大数据学报. 2021(02): 3-15 .
    19. 尹航,廖梓渊,徐龙琴,刘双印,曹亮,郭建军. 基于ECharts的对虾产业数据可视化分析平台设计及实现. 现代农业装备. 2021(04): 7-14 .

    Other cited types(12)

Catalog

    Article views (664) PDF downloads (23) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return