Citation: | LI Tianpei, WANG Xiaochan, SHI Yinyan, et al. Evaluation and analysis of comprehensive benefits of aquaponics technology in Jiangning District, Nanjing City[J]. Journal of South China Agricultural University, 2024, 45(6): 966-974. DOI: 10.7671/j.issn.1001-411X.202406045 |
Aquaponics technology combines the advantages of aquaculture and crop cultivation, featuring high nitrogen conversion utilization ratio as well as water saving and emission reduction, realizing a win-win situation for both economic and environmental benefits, but aquaponics system involves many economic and environmental indicators, and there are fewer current studies on comprehensive benefit evaluation of this production model. In this study, the environmental and economic benefits of aquaponics systems were quantitatively analyzed, systematically evaluated and compared, with a view to providing new ideas for qualitative and quantitative analyses and research on aquaponics technology.
Based on the actual construction and operation data of the aquaponics farm in Jiangning District of Nanjing City, this study took environmental and economic benefits as two main evaluation indexes, calculated nitrogen emission of the single aquaculture mode as well as related nitrogen loss and nitrogen transformation in the aquaponics through the empirical formula method, qualitatively and quantitatively calculated nitrogen transformation and emission of the aquaponics system through the measurement method, and calculated the economic indexes of the aquaponics system based on the questionnaire of the farm and the results of the research.
After adopting aquaponics technology, the total nitrogen emission was reduced by 99.45% and the total ammonia nitrogen emission was reduced by 99.73% compared with the single aquaculture mode; N2O emission and microbial assimilation caused more nitrogen loss, were 4.58 and 48.60 times more than total nitrogen emission in water, respectively; The degradation of NO2−-N by nitrifying bacteria was enhanced, the water quality was more conducive to the survival of fish. In the first year of aquaponics farm, the construction cost accounted for 55.21%, which exceeded the sum of other expenditures. Feed cost was the main source of cost when running the aquaponics farm, accounting for 73.96%. Aquaculture income accounted for 89.74% of the total income, which was 8.75 times more than the sum of planting income and service income.
This study establishes the scientific comprehensive benefit evaluation system of aquaponics, which has certain guiding significance for the evaluation of ecological and economic benefits of aquaponics technology, and can provide multi-dimensional references for the research and application of aquaponics technology.
[1] |
赵思琪, 丁为民. 水产养殖精准投喂关键技术研究进展[J]. 智能化农业装备学报(中英文), 2023, 4(1): 42-53.
|
[2] |
SCHNEIDER O, SERETI V, EDING E H, et al. Analysis of nutrient flows in integrated intensive aquaculture systems[J]. Aquacultural Engineering, 2005, 32(3/4): 379-401.
|
[3] |
生态环境部, 国家统计局, 农业农村部. 第二次全国污染源普查公报[EB/OL]. (2020-06-09) [2024-06-27]. https://www.gov.cn/xinwen/2020-06/10/content_5518391.htm.
|
[4] |
李天沛, 汪小旵, 丁为民, 等. 鱼菜共生系统中不同种类蔬菜对养殖尾水氮素转化的影响[J]. 农业工程学报, 2022, 38(9): 247-252. doi: 10.11975/j.issn.1002-6819.2022.09.027
|
[5] |
周怀兵, 周德龙. 南京市江宁区高效设施农业发展举措[J]. 长江蔬菜, 2020(5): 4-6.
|
[6] |
蔡淑芳, 陈敏, 陈永快, 等. 种植密度对鱼菜共生系统氮素转化的影响[J]. 农业工程学报, 2019, 35(4): 132-137. doi: 10.11975/j.issn.1002-6819.2019.04.016
|
[7] |
郑广智, 张珊, 郭海涛, 等. 物联网和PLC技术在鱼菜共生系统中的应用[J]. 中国农学通报, 2021, 37(30): 133-138. doi: 10.11924/j.issn.1000-6850.casb2020-0239
|
[8] |
徐琰斐, 单建军, 顾川川, 等. 菜−鱼复合设施种养系统构建与运行试验分析[J]. 农业工程学报, 2023, 39(2): 150-156. doi: 10.11975/j.issn.1002-6819.202210085
|
[9] |
LOBANOV V, DE VRIEZE J, JOYCE A. Simultaneous biomethane production and nutrient remineralization from aquaculture solids[J]. Aquacultural Engineering, 2023, 101: 102328. doi: 10.1016/j.aquaeng.2023.102328
|
[10] |
KEESMAN K J, KÖRNER O, WAGNER K, et al. Aquaponics systems modelling[M]//Aquaponics food production systems. Cham: Springer International Publishing, 2019: 267-299.
|
[11] |
ZHU Z, YOGEV U, GODDEK S, et al. Carbon dynamics and energy recovery in a novel near-zero waste aquaponics system with onsite anaerobic treatment[J]. Science of the Total Environment, 2022, 833: 155245. doi: 10.1016/j.scitotenv.2022.155245
|
[12] |
杨思宇, 朱浩辰, 刘友晴, 等. 鱼菜共生发展与经济效益分析[J]. 养殖与饲料, 2021, 20(10): 64-66. doi: 10.3969/j.issn.1671-427X.2021.10.023
|
[13] |
蔡淑芳, 刘现, 王涛, 等. 鱼菜共生系统经济可行性研究进展[J]. 江苏农业科学, 2019, 47(5): 5-8.
|
[14] |
大连市环境监测中心, 天津市环境监测中心, 辽宁省环境监测实验中心, 等. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012.
|
[15] |
沈阳市环境监测中心站. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535—2009[S]. 北京: 中国环境科学出版社, 2009.
|
[16] |
湖北省环境监测中心. 水质 亚硝酸盐氮的测定 分光光度法: GB/T 7493—1987[S]. 北京: 国家环境保护局, 1987.
|
[17] |
国家环境保护总局水和废水监测分析方法编委会, 中国环境监测总站. 水质 硝酸盐氮的测定 紫外分光光度法(试行): HJ/T 346—2007[S]. 北京: 中国环境科学出版社, 2007.
|
[18] |
BÓRQUEZ-LOPEZ R A, CASILLAS-HERNANDEZ R, LOPEZ-ELIAS J A, et al. Improving feeding strategies for shrimp farming using fuzzy logic, based on water quality parameters[J]. Aquacultural Engineering, 2018, 81: 38-45. doi: 10.1016/j.aquaeng.2018.01.002
|
[19] |
TACON A G J, FORSTER I P. Aquafeeds and the environment: Policy implications[J]. Aquaculture, 2003, 226(1/2/3/4): 181-189.
|
[20] |
MARTINEZ-PORCHAS M, MARTINEZ-CORDOVA L R. World aquaculture: Environmental impacts and troubleshooting alternatives[J]. Scientific World Journal, 2012: 389623.
|
[21] |
EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1/2/3/4): 346-358.
|
[22] |
HU Z, LEE J W, CHANDRAN K, et al. Effect of plant species on nitrogen recovery in aquaponics[J]. Bioresource Technology, 2015, 188: 92-98. doi: 10.1016/j.biortech.2015.01.013
|
[23] |
WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4): 1027-1037. doi: 10.1016/j.watres.2011.11.080
|
[24] |
LU H, CHANDRAN K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors[J]. Biotechnology and Bioengineering, 2010, 106(3): 390-398. doi: 10.1002/bit.22704
|
[25] |
ZOU Y, HU Z, ZHANG J, et al. Effects of pH on nitrogen transformations in media-based aquaponics[J]. Bioresource Technology, 2016, 210: 81-87. doi: 10.1016/j.biortech.2015.12.079
|
[26] |
HU Z, LEE J W, CHANDRAN K, et al. Nitrous oxide (N2O) emission from aquaculture: A review[J]. Environmental Science & Technology, 2012, 46: 6470-6480.
|
[27] |
HARGREAVES J A. Nitrogen biogeochemistry of aquaculture ponds[J]. Aquaculture, 1998, 166(3/4): 181-212.
|
[28] |
FINK M, FELLER C. An empirical model for describing growth and nitrogen uptake of white cabbage (Brassica oleracea var. capitata)[J]. Scientia Horticulturae, 1998, 73(2/3): 75-88.
|
[29] |
贺志文. 水培生菜吸氮模型构建与营养液氮素调控研究[D]. 晋中: 山西农业大学, 2018.
|
[30] |
李响. 玉米加工污水灌溉对油菜生长的影响[D]. 长春: 吉林大学, 2015.
|
[31] |
王齐龙. 减氮配施钙、镁、硼、钼对几种蔬菜产量和品质的影响[D]. 佛山: 佛山科学技术学院, 2020.
|
[32] |
徐跑. 中国稻鱼综合种养的发展与展望[J]. 大连海洋大学学报, 2021, 36(5): 717-726.
|
[33] |
李天沛, 汪小旵, 施印炎, 等. 鱼菜共生技术及其系统装备的研究现状与展望[J/OL]. 南京农业大学学报 (2024-06-14) [2024-06-27]. http://kns.cnki.net/kcms/detail/32.1148.S.20240613.1725.004.html.
|