Citation: | YANG Li, MENG Qingmi, BAI Tianquan, et al. Effects of altitude on gut structure, digestive enzyme activity and gut microbiota of Cyprinus carpio var. Jinbei in rice field[J]. Journal of South China Agricultural University, 2024, 45(6): 898-907. DOI: 10.7671/j.issn.1001-411X.202406044 |
In order to explore the gut structure, digestive enzyme activity and gut microbiota characteristics of Cyprinus carpio var. Jinbei at different altitudes.
C. carpio var. Jinbei in rice fields at low (580 m), middle (830 m) and high (
The villus height of C. carpio var. Jinbei of the low altitude group (521.04 μm) was significantly higher than those of the middle altitude group (438.01 μm) and high altitude group (419.39 μm) (P< 0.05). The trypsin activity of C. carpio var. Jinbei of the middle altitude group (
Different altitudes affect the intestinal morphology, digestive enzyme activity, and gut microbiota structure of C. carpio var. Jinbei in rice field. Although the gut microbiota of C. carpio var. Jinbei in rice field changes at different altitudes, it still maintains a relatively stable gut microbiota dominated by Actinobacteria, indicating that C. carpio var. Jinbei gut has been adapted to the ecological environment in rice field.
[1] |
倪国彬, 周捷. “一稻多渔”综合种养新模式初探[J]. 水产科技情报, 2023, 50(2): 112-115.
|
[2] |
YUAN J, LIAO C, ZHANG T, et al. Advances in ecology research on integrated rice field aquaculture in china[J]. Water, 2022, 14(15): 2333. doi: 10.3390/w14152333
|
[3] |
XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the Natitional Academy of Sciences of the United States of America, 2011, 108(50): E1381-E1387.
|
[4] |
李荣福, 杜雪地, 徐忠香, 等. 中国稻田渔业起源与历史分析[J]. 中国渔业经济, 2023, 41(3): 113-126.
|
[5] |
叶茂林. 小议贵州出土的水塘稻田模型[J]. 贵州文史丛刊, 1990(4): 32-37.
|
[6] |
吴寿昌, 龙慧蕊, 吴德军. 和谐共生的千年高坡田 探访全球重要农业文化遗产贵州从江侗乡稻鱼鸭复合系统[J]. 中国民族, 2023(6): 45-49.
|
[7] |
王思明, 卢勇. 中国的农业遗产研究: 进展与变化[J]. 中国农史, 2010, 29(1): 3-11.
|
[8] |
纪达, 许劲松, 姚俊杰, 等. 贵州省5个金背鲤(Cyprinus carpio var. Jinbei)地理种群的遗传多样性与遗传结构分析[J]. 水产学杂志, 2022, 35(5): 8-17.
|
[9] |
张文争. 稻田养殖金背鲤肌肉生长及pi3k/akt通路的研究[D]. 贵阳: 贵州大学, 2023: 82.
|
[10] |
张文争, 杨立, 姚俊杰, 等. 稻田金背鲤尾柄肌纤维特征及相关代谢酶与基因表达研究[J]. 南方水产科学, 2023, 19(4): 77-85.
|
[11] |
JI D, SU X, YAO J, et al. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in guizhou, china[J]. Animals, 2022, 12(11): 1377. doi: 10.3390/ani12111377
|
[12] |
BUNDSCHUH M, MESQUITA-JOANES F, RICO A, et al. Understanding ecological complexity in a chemical stress context: A reflection on recolonization, recovery, and adaptation of aquatic populations and communities[J]. Environmental Toxicology and Chemistry, 2023, 42(9): 1857-1866. doi: 10.1002/etc.5677
|
[13] |
ZHANG W, LI N, TANG X, et al. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii[J]. Ecology and Evolution, 2018, 8(9): 4695-4703. doi: 10.1002/ece3.4029
|
[14] |
HUTCHISON V H, HAINES H B, ENGBRETSON G. Aquatic life at high altitude: respiratory adaptations in the lake titicaca frog, Telmatobius culeus[J]. Respiration Physiology, 1976, 27(1): 115-129. doi: 10.1016/0034-5687(76)90022-0
|
[15] |
WILLIAMS C M, SZEJNER-SIGAL A, MORGAN T J, et al. Adaptation to low temperature exposure increases metabolic rates independently of growth rates[J]. Integrative and Comparative Biology, 2016, 56(1): 62-72. doi: 10.1093/icb/icw009
|
[16] |
XIAO F, ZHU W, YU Y, et al. Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota[J]. NPJ Biofilms and Microbiomes, 2021, 7(1): 5. doi: 10.1038/s41522-020-00176-2
|
[17] |
SHAPIRA M. Gut microbiotas and host evolution: Scaling up symbiosis[J]. Trends in Ecology & Evolution, 2016, 31(7): 539-549.
|
[18] |
ZHOU X, JIANG X, YANG C, et al. Cecal microbiota of Tibetan chickens from five geographic regions were determined by 16S rRNA sequencing[J]. MicrobiologyOpen, 2016, 5(5): 753-762. doi: 10.1002/mbo3.367
|
[19] |
WU D D, YANG C P, WANG M S, et al. Convergent genomic signatures of high-altitude adaptation among domestic mammals[J]. National Science Review, 2020, 7(6): 952-963. doi: 10.1093/nsr/nwz213
|
[20] |
ZHAO J, YAO Y, LI D, et al. Characterization of the gut microbiota in six geographical populations of Chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment[J]. Microbial Ecology, 2018, 76(2): 565-577. doi: 10.1007/s00248-018-1146-8
|
[21] |
ZHANG W, JIAO L, LIU R, et al. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice[J]. PLoS One, 2018, 13(9): e203701.
|
[22] |
BEREDED N K, ABEBE G B, FANTA S W, et al. The gut bacterial microbiome of nile tilapia (Oreochromis niloticus) from lakes across an altitudinal gradient[J]. BMC Microbiology, 2022, 22(1): 87. doi: 10.1186/s12866-022-02496-z
|
[23] |
段玲, 罗涵, 陈章. 高原缺氧与胃肠道屏障功能关系的研究进展[J]. 西南军医, 2015, 17(2): 179-182.
|
[24] |
吴文明, 张方信, 张盼, 等. 高原缺氧条件对大鼠肠黏膜组织及缺氧诱导因子−1α、诱导型一氧化氮合酶表达的影响[J]. 解放军医学杂志, 2010, 35(5): 592-594.
|
[25] |
李大鹏. 环境因子对史氏鲟生长的影响及其调控机制的研究[D]. 武汉: 华中农业大学, 2003: 182.
|
[26] |
FAN Q, WANAPAT M, YAN T, et al. Altitude influences microbial diversity and herbage fermentation in the rumen of yaks[J]. BMC Microbiology, 2020, 20(1): 370. doi: 10.1186/s12866-020-02054-5
|
[27] |
MA Y, MA S, CHANG L, et al. Gut microbiota adaptation to high altitude in indigenous animals[J]. Biochemical and Biophysical Research Communications, 2019, 516(1): 120-126. doi: 10.1016/j.bbrc.2019.05.085
|
[28] |
WU Y, YAO Y, DONG M, et al. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments[J]. BMC Microbiology, 2020, 20(1): 68. doi: 10.1186/s12866-020-01747-1
|
[29] |
RUBINO T, PAROLARO D. The impact of exposure to cannabinoids in adolescence: Insights from animal models[J]. Biological Psychiatry, 2016, 79(7): 578-585. doi: 10.1016/j.biopsych.2015.07.024
|
[30] |
GIATSIS C, SIPKEMA D, SMIDT H, et al. The impact of rearing environment on the development of gut microbiota in tilapia larvae[J]. Scientific Reports, 2015, 5: 18206. doi: 10.1038/srep18206
|
[31] |
PETERSEN C, ROUND J L. Defining dysbiosis and its influence on host immunity and disease[J]. Cellular Microbiology, 2014, 16(7): 1024-1033. doi: 10.1111/cmi.12308
|
[32] |
COLSTON T J, JACKSON C R. Microbiome evolution along divergent branches of the vertebrate tree of life: What is known and unknown[J]. Molecular Ecology, 2016, 25(16): 3776-3800. doi: 10.1111/mec.13730
|
[33] |
MURPHY E F, COTTER P D, HEALY S, et al. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models[J]. Gut, 2010, 59(12): 1635-1642. doi: 10.1136/gut.2010.215665
|
[34] |
SPRINGER A, FICHTEL C, Al-GHALITH G A, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi)[J]. Ecology and Evolution, 2017, 7(15): 5732-5745. doi: 10.1002/ece3.3148
|
[35] |
张京理, 许玲, 李鑫, 等. 陇县不同海拔烟田昆虫群落的多样性研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(11): 173-180.
|
[36] |
LI X, ZHOU L, YU, Y, et al. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development[J]. Microbial Ecology, 2017, 74(1): 239-249. doi: 10.1007/s00248-016-0924-4
|