• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
TANG Fangyi, XUE Yihan, JIA Lülun, et al. Aquaculture wastewater disposal through dual microbial fuel cell constructed by coupling anaerobic ammonia oxidation sludge and chlorella[J]. Journal of South China Agricultural University, 2025, 46(2): 222-229. DOI: 10.7671/j.issn.1001-411X.202406037
Citation: TANG Fangyi, XUE Yihan, JIA Lülun, et al. Aquaculture wastewater disposal through dual microbial fuel cell constructed by coupling anaerobic ammonia oxidation sludge and chlorella[J]. Journal of South China Agricultural University, 2025, 46(2): 222-229. DOI: 10.7671/j.issn.1001-411X.202406037

Aquaculture wastewater disposal through dual microbial fuel cell constructed by coupling anaerobic ammonia oxidation sludge and chlorella

More Information
  • Received Date: June 23, 2024
  • Revised Date: August 18, 2024
  • Accepted Date: August 24, 2024
  • Available Online: January 23, 2025
  • Published Date: January 21, 2025
  • Objective 

    To construct the dual microbial fuel cell (DMFC) by coupling anaerobic ammonia oxidation sludge and chlorella, hoping to remove the high concentration of nitrogen, phosphorus and organic matter in aquaculture wastewater while generating electricity, and provide a new way for aquaculture wastewater disposal and bioenergy preparation.

    Method 

    The anaerobic ammonia oxidation sludge was mixed with simulated wastewater at the volume ratio of 1∶4 and added to the anode chamber, while chlorella was mixed with BG-11 medium at the volume ratio of 1∶4 and added to the cathode chamber. After running for 24 h, the anode chamber began to discharge water, which was then added to the cathode chamber. The system was maintained at a constant temperature and a light-dark cycle mode. The voltage, mass concentrations of ammonia nitrogen/NO2-N/NO3-N/total phosphorus, soluble chemical oxygen demand (SCOD) and pH of wastewater were monitored during the system running.

    Result 

    There was an obvious electron exchange between the anaerobic ammonia oxidation sludge and chlorella, and the system had good electricity generation performance, the positive and negative peak voltages of DMFC in the stable operation stage were 45 and −125 mV respectively. The ammonia nitrogen mass concentration decreased from 1 588.97 mg/L to 602.75 mg/L, with the removal rate of 62.07%; The removal rates of NO2-N, total phosphorus and SCOD were 88.62%, 54.45% and 63.72% respectively. The system operated stably at pH 9.5.

    Conclusion 

    This study successfully establishes a DMFC system constructed by coupling anaerobic ammonia oxidation sludge and chlorella. The system not only effectively removes nitrogen, phosphorus and reduces organic matter concentration, but also continuously generates electricity, providing an effective way to address environmental and energy issues simultaneously.

  • [1]
    ZHENG H, WU X, ZOU G, et al. Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production: Effect of ammonium concentration, carbon/nitrogen ratio and pH[J]. Bioresource Technology, 2019, 273: 203-211. doi: 10.1016/j.biortech.2018.11.019
    [2]
    AHMAD A L, CHIN J Y, HARUN M H Z M, et al. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review[J]. Journal of Water Process Engineering, 2022, 46: 102553. doi: 10.1016/j.jwpe.2021.102553
    [3]
    LI X, WU S, YANG C, et al. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review[J]. Bioresource Technology, 2020, 318: 123858. doi: 10.1016/j.biortech.2020.123858
    [4]
    ZENG W S, WANG D H, WU Z Y, et al. Recovery of nitrogen and phosphorus fertilizer from pig farm biogas slurry and incinerated chicken manure fly ash[J]. Science of the Total Environment, 2021, 782: 146856. doi: 10.1016/j.scitotenv.2021.146856
    [5]
    KABUBA J, LEPHALLO J, RUTTO H. Comparison of various technologies used to eliminate nitrogen from wastewater: A review[J]. Journal of Water Process Engineering, 2022, 48: 102885. doi: 10.1016/j.jwpe.2022.102885
    [6]
    ZHANG W, CHU H, YANG L, et al. Technologies for pollutant removal and resource recovery from blackwater: A review[J]. Frontiers of Environmental Science & Engineering, 2023, 17(7): 83. doi: 10.1007/s11783-023-1683-3
    [7]
    CHEN X, LIU L, BI Y, et al. A review of anammox metabolic response to environmental factors: Characteristics and mechanisms[J]. Environmental Research, 2023, 223: 115464. doi: 10.1016/j.envres.2023.115464
    [8]
    ABMA W, SCHULTZ C, MULDER J W, et al. The advance of anammox[J]. Water, 2007: 36-37.
    [9]
    李彩林, 刘扬, 李月. 菌藻微生物燃料电池处理模拟养殖废水的研究[J]. 青海大学学报(自然科学版), 2023, 41(6): 1-8.
    [10]
    苟珍琼, 郑道会, 罗发文. 光催化耦合微生物燃料电池协同处理废水的研究进展[J]. 现代化工, 2023, 43(S1): 101-104.
    [11]
    王子义, 张嫄, 刘根深, 等. 微生物燃料电池污废水处理及能源化研究进展[J]. 净水技术, 2024, 43(11): 29-38.
    [12]
    WANG Y M, LIN Z Y, SU X S, et al. Cost-effective domestic wastewater treatment and bioenergy recovery in an immobilized microalgal-based photoautotrophic microbial fuel cell (PMFC)[J]. Chemical Engineering Journal, 2019, 372: 956-965. doi: 10.1016/j.cej.2019.05.004
    [13]
    SONU K, SOGANI M, SYED Z, et al. Improved decolorization of dye wastewater and enhanced power output in the electrically stacked microbial fuel cells with H2O2 modified corncob anodes[J]. Environmental Progress & Sustainable Energy, 2021, 40(5): ep13638. doi: 10.1002/ep.13638
    [14]
    MIN B, KIM J R, OH S E, et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39(20): 4961-4968. doi: 10.1016/j.watres.2005.09.039
    [15]
    王佳璇, 段嘉琪, 刘喆, 等. 藻类微生物燃料电池的构型发展及应用现状[J]. 环境科学与技术, 2023, 46(4): 61-71.
    [16]
    HASSAN M, WEI H, QIU H, et al. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes[J]. Bioresource Technology, 2018, 247: 434-442. doi: 10.1016/j.biortech.2017.09.124
    [17]
    YADAV G, SHARMA I, GHANGREKAR M, et al. A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell[J]. Journal of Power Sources, 2020, 449: 227560. doi: 10.1016/j.jpowsour.2019.227560
    [18]
    严茜. 藻膜阴极微生物电化学系统处理垃圾渗滤液效能及机理研究[D]. 烟台: 烟台大学, 2023.
    [19]
    DING A, ZHAO D, DING F, et al. Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism[J]. Chemical Engineering Journal, 2018, 343: 399-407. doi: 10.1016/j.cej.2018.02.119
    [20]
    ZHANG Y, ZHAO Y, ZHOU M. A photosynthetic algal microbial fuel cell for treating swine wastewater[J]. Environmental Science and Pollution Research, 2019, 26(6): 6182-6190. doi: 10.1007/s11356-018-3960-4
    [21]
    ZHANG J, ZHANG Z, RONG K, et al. Simultaneous anaerobic ammonium oxidation and electricity generation in microbial fuel cell: Performance and electrochemical characteristics[J]. Processes, 2022, 10(11): 2379. doi: 10.3390/pr10112379
    [22]
    SAM T, LE ROES-HILL M, HOOSAIN N, et al. Strategies for controlling filamentous bulking in activated sludge wastewater treatment plants: The old and the new[J]. Water, 2022, 14(20): 3223. doi: 10.3390/w14203223
    [23]
    GUO J, WANG S, WANG Z, et al. Effects of feeding pattern and dissolved oxygen concentration on microbial morphology and community structure: The competition between floc-forming bacteria and filamentous bacteria[J]. Journal of Water Process Engineering, 2014, 1: 108-114. doi: 10.1016/j.jwpe.2014.03.011
    [24]
    DALIRY S, HALLAJISANI A, MOHAMMADI ROSHANDEH J, et al. Investigation of optimal condition for Chlorella vulgaris microalgae growth[J]. Global Journal of Environmental Science and Management, 2017, 3(2): 217-230.
    [25]
    ZHANG C, LI S, HO S. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review[J]. Bioresource Technology, 2021, 342: 126056. doi: 10.1016/j.biortech.2021.126056
    [26]
    黄山, 杨莹莹, 仇志峰, 等. 蛋白核小球藻-硝化细菌共培养条件优化与氮磷去除效果[J]. 青岛理工大学学报, 2023, 44(3): 15-25. doi: 10.3969/j.issn.1673-4602.2023.03.003
    [27]
    中国环境监测总站. 水质 化学需氧量的测定 重铬酸盐法: HJ 828—2017[S]. 1989.
    [28]
    北京市环保监测中心, 上海市环境监测中心. 水质 总磷的测定 钼酸铵分光光度法: GB/T 11893—1989[S]. 1989.
    [29]
    江苏省环境监测站. 水质 铵的测定 纳氏试剂比色法: GB/T 7479—1987[S]. 1987.
    [30]
    中国科学院南京土壤研究所, 中国科学院亚热带农业生态研究所, 中国科学院西双版纳热带植物园, 等. 土壤硝态氮的测定 紫外分光光度法: GB/T 32737—2016[S]. 北京: 中国标准出版社, 2016.
    [31]
    中国环境监测总站. 大气降水中亚硝酸盐的测定 N-(1-萘基)-乙二胺光度法: GB/T 13580.7—1992[S]. 1992.
    [32]
    ZHANG H, GE C, YU M, et al. Performance of cathodic nitrate reduction driven by electricity generated from ANAMMOX sludge in anode[J]. Process Biochemistry, 2020, 90: 148-155. doi: 10.1016/j.procbio.2019.11.013
    [33]
    ZHANG G, ZHAO Q, JIAO Y, et al. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell[J]. Water Research, 2012, 46(1): 43-52. doi: 10.1016/j.watres.2011.10.036
    [34]
    WANG J T, SONG A I, HUANG Y, et al. Domesticating Chlorella vulgaris with gradually increased the concentration of digested piggery wastewater to bio-remove ammonia nitrogen[J]. Algal Research-Biomass Biofuels and Bioproducts, 2021, 60: 102526. doi: 10.1016/j.algal.2021.102526
    [35]
    COLLOS Y, HARRISON P J. Acclimation and toxicity of high ammonium concentrations to unicellular algae[J]. Marine Pollution Bulletin, 2014, 80(1/2): 8-23.
    [36]
    李宝珍, 范晓荣, 徐国华. 植物吸收利用铵态氮和硝态氮的分子调控[J]. 植物生理学通讯, 2009, 45(1): 80-88.
    [37]
    MAESTRINI S Y, ROBERT, J M, LEFTLEY J W, et al. Ammonium thresholds for simutaneous uptake of ammonium and nitrate by oyster-pond algae[J]. Journal of Experimental Marine Biology and Ecology, 1986, 102(1): 75-98. doi: 10.1016/0022-0981(86)90127-9
    [38]
    ZHANG L, TIAN Z, QIAN Y, et al. Long-term effects of phosphorus deficiency on one-stage partial nitrification-anammox system and recovery strategies[J]. Journal of Cleaner Production, 2023, 402: 136820. doi: 10.1016/j.jclepro.2023.136820
    [39]
    HUANG W, ZHOU J, HE X, et al. Simultaneous nitrogen and phosphorus removal from simulated digested piggery wastewater in a single-stage biofilm process coupling anammox and intracellular carbon metabolism[J]. Bioresource Technology, 2021, 333: 125152. doi: 10.1016/j.biortech.2021.125152
    [40]
    ZHA X, MA J, LU X. Use of a low-cost and energy-efficient device for treating low-strength wastewater at low temperatures focusing on nitrogen removal and microbial community[J]. Science of the Total Environment, 2020, 722: 137916. doi: 10.1016/j.scitotenv.2020.137916
    [41]
    谭顺. 驯化对小球藻在沼液废水处理中的强化效果研究[D]. 南宁: 广西大学, 2022.
    [42]
    PRAVEEN P, GUO Y C, KANG H, et al. Enhancing microalgae cultivation in anaerobic digestate through nitrification[J]. Chemical Engineering Journal, 2018, 354: 905-912. doi: 10.1016/j.cej.2018.08.099
    [43]
    LU S M, LIU X G, LIU C, et al. A review of ammonia-oxidizing archaea and anaerobic ammonia-oxidizing bacteria in the aquaculture pond environment in China[J]. Frontiers in Microbiology, 2021, 12: 775794. doi: 10.3389/fmicb.2021.775794
    [44]
    HU P, STROM P F. Effect of pH on fungal growth and bulking in laboratory-activated sludges[J]. Research Journal of the Water Pollution Control Federation, 1991, 63(3): 276-277.

Catalog

    Article views (47) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return