• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
YU Lei, XU Jiajia, NI Chen, et al. Individual tree parameter extraction and biomass estimation based on the quantitative structure model[J]. Journal of South China Agricultural University, 2025, 46(3): 379-389. DOI: 10.7671/j.issn.1001-411X.202406034
Citation: YU Lei, XU Jiajia, NI Chen, et al. Individual tree parameter extraction and biomass estimation based on the quantitative structure model[J]. Journal of South China Agricultural University, 2025, 46(3): 379-389. DOI: 10.7671/j.issn.1001-411X.202406034

Individual tree parameter extraction and biomass estimation based on the quantitative structure model

More Information
  • Received Date: June 22, 2024
  • Available Online: March 02, 2025
  • Published Date: March 03, 2025
  • Objective 

    This article takes the deciduous broad-leaved forest in the Tianma National Nature Reserve in Anhui Province as the research subject, exploring the application potential of the quantitative structure model in biomass estimation of individual tree in complex environment using unmanned aerial vehicle laser scanning data.

    Method 

    Through ground surveys and the use of unmanned aerial vehicles, plot data and LiDAR point cloud data were collected, with the ground data serving as the reference measurements. The comparative shortest-path algorithm was used for point cloud segmentation. Subsequently, tree parameters (such as diameter at breast height, trunk volume, branch volume, number of branches, canopy base height, canopy area, canopy volume, and crown width) were extracted from the segmented individual tree point clouds using the quantitative structure model. Pearson correlation coefficient and variance inflation factor were then employed for variable selection of the parameters. Finally, an individual tree biomass estimation model was constructed based on the three machine learning algorithms.

    Result 

    Among the biomass models, the one based on random forest (RF) achieved the best training performance (R2 = 0.880 0, RMSE = 192.81 kg, rRMSE = 29.88%). The performance of the multilayer perceptron (MLP) model (R2 = 0.820 0, RMSE = 233.62 kg, rRMSE = 36.65%) was quite similar to that of the support vector machine (SVM) model (R2 = 0.810 0, RMSE = 243.67 kg, rRMSE = 37.77%).

    Conclusion 

    This article confirms that the tree parameters extracted from the quantitative structure model can be used to construct a high-precision biomass estimation model for deciduous broadleaf species, providing a new method for resource surveys in complex forest environment.

  • [1]
    BROWN S, SCHROEDER P, KERN J. Spatial distribution of biomass in forests of the eastern USA[J]. Forest Ecology and Management, 1999, 123(1): 81-90. doi: 10.1016/S0378-1127(99)00017-1
    [2]
    刘立斌, 周运超, 程安云, 等. 利用皆伐法估算黔中喀斯特森林地上生物量[J]. 生态学报, 2020, 40(13): 4455-4461.
    [3]
    孟凡栋, 王常顺, 朱小雪, 等. 西藏高原金露梅灌丛草甸物种丰富度和生物量取样方法探讨[J]. 生态学杂志, 2016, 35(12): 3435-3442.
    [4]
    万五星, 王效科, 李东义, 等. 暖温带森林生态系统林下灌木生物量相对生长模型[J]. 生态学报, 2014, 34(23): 6985-6992.
    [5]
    WHITE J C, COOPS N C, WULDER M A, et al. Remote sensing technologies for enhancing forest inventories: A review[J]. Canadian Journal of Remote Sensing, 2016, 42(5): 619-641. doi: 10.1080/07038992.2016.1207484
    [6]
    WULDER M A, WHITE J C, NELSON R F, et al. Lidar sampling for large-area forest characterization: A review[J]. Remote Sensing of Environment, 2012, 121: 196-209. doi: 10.1016/j.rse.2012.02.001
    [7]
    LU J, WANG H, QIN S, et al. Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and backpack LiDAR point clouds[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 86: 102014. doi: 10.1016/j.jag.2019.102014
    [8]
    罗谨璇, 田义超, 张强, 等. 利用无人机激光雷达估算红树林地上生物量[J]. 海洋学报, 2023, 45(8): 108-119.
    [9]
    GARCIA M, RIANO D, CHUVIECO E, et al. Estimating biomass carbon stocks for a Mediterranean forest in central spain using LiDAR height and intensity data[J]. Remote Sensing of Environment, 2010, 114(4): 816-830. doi: 10.1016/j.rse.2009.11.021
    [10]
    CORTE A P D, SOUZA D V, REX F E, et al. Forest inventory with high-density UAV-LiDAR: Machine learning approaches for predicting individual tree attributes[J]. Computers and Electronics in Agriculture, 2020, 179: 105815. doi: 10.1016/j.compag.2020.105815
    [11]
    KNAPP N, FISCHER R, CAZCARRA-BES V, et al. Structure metrics to generalize biomass estimation from LiDAR across forest types from different continents[J]. Remote Sensing of Environment, 2020, 237: 111597. doi: 10.1016/j.rse.2019.111597
    [12]
    刘浩然, 范伟伟, 徐永胜, 等. 基于无人机激光雷达点云的单木生物量估测[J]. 中南林业科技大学学报, 2021, 41(8): 92-99.
    [13]
    HALL S A, BURKE I C, BOX D O, et al. Estimating stand structure using discrete-return LiDAR: An example from low density, fire prone ponderosa pine forests[J]. Forest Ecology and Management, 2005, 208(1/2/3): 189-209. doi: 10.1016/j.foreco.2004.12.001
    [14]
    HOSOI F, NAKAI Y, OMASA K. 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning LiDAR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 41-48. doi: 10.1016/j.isprsjprs.2013.04.011
    [15]
    DEMOL M, CALDERS K, VERBEECK H, et al. Forest above-ground volume assessments with terrestrial laser scanning: A ground-truth validation experiment in temperate, managed forests[J]. Annals of Botany, 2021, 128(6): 805-819. doi: 10.1093/aob/mcab110
    [16]
    HAUGLIN M, ASTRUP R, GOBAKKEN T, et al. Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features[J]. Scandinavian Journal of Forest Research, 2013, 28(5): 456-469. doi: 10.1080/02827581.2013.777772
    [17]
    BREDE B, TERRYN L, BARBIER N, et al. Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning[J]. Remote Sensing of Environment, 2022, 280: 113180. doi: 10.1016/j.rse.2022.113180
    [18]
    DALLA CORTE A P, DE VASCONCELLOS B N, REX F E, et al. Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-forest system[J]. Land, 2022, 11(4): 507. doi: 10.3390/land11040507
    [19]
    YE N, VAN LEEUWEN L, NYKTAS P. Analysing the potential of UAV point cloud as input in quantitative structure modelling for assessment of woody biomass of single trees[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 81: 47-57. doi: 10.1016/j.jag.2019.05.010
    [20]
    赵丽娟, 项文化. 常绿阔叶林石栎和青冈种群生活史特征与空间分布格局[J]. 西北植物学报, 2014, 34(6): 1259-1268. doi: 10.7606/j.issn.1000-4025.2014.06.1259
    [21]
    ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. doi: 10.3390/rs8060501
    [22]
    TAO S, WU F, GUO Q, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110: 66-76. doi: 10.1016/j.isprsjprs.2015.10.007
    [23]
    DELAGRANGE S, JAUVIN C, ROCHON P. PypeTree: A tool for reconstructing tree perennial tissues from point clouds[J]. Sensors, 2014, 14(3): 4271-4289. doi: 10.3390/s140304271
    [24]
    RAUMONEN P, KAASALAINEN M, AKERBLOM M, et al. Fast automatic precision tree models from terrestrial laser scanner data[J]. Remote Sensing, 2013, 5(2): 491-520. doi: 10.3390/rs5020491
    [25]
    HACKENBERG J, SPIECKER H, CALDERS K, et al. SimpleTree: An efficient open source tool to build tree models from TLS clouds[J]. Forests, 2015, 6(11): 4245-4294. doi: 10.3390/f6114245
    [26]
    国家市场监督管理总局, 国家标准化管理委员会. 主要树种立木生物量模型与碳计量参数: GB/T 43648—2024[S]. 北京: 中国标准出版社, 2024.
    [27]
    MAXWELL A E, WARNER T A, FANG F. Implementation of machine-learning classification in remote sensing: An applied review[J]. International Journal of Remote Sensing, 2018.
    [28]
    ZHANG Y, MA J, LIANG S, et al. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products[J]. Remote Sensing, 2020, 12(24): 4015. doi: 10.3390/rs12244015
    [29]
    FEKRY R, YAO W, CAO L, et al. Ground-based/UAV-LiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest[J]. Forest Ecosystems, 2022, 9: 100065. doi: 10.1016/j.fecs.2022.100065
    [30]
    KRŮČEK M, KRÁL K, CUSHMAN K C, et al. Supervised segmentation of ultra-high-density drone lidar for large-area mapping of individual trees[J]. Remote Sensing, 2020, 12(19): 3260. doi: 10.3390/rs12193260
    [31]
    SCHNEIDER F D, KÜKENBRINK D, SCHAEPMAN M E, et al. Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR[J]. Agricultural and Forest Meteorology, 2019, 268: 249-257. doi: 10.1016/j.agrformet.2019.01.033
    [32]
    COOPS N C, TOMPALSKI P, GOODBODY T R H, et al. Modelling LiDAR-derived estimates of forest attributes over space and time: A review of approaches and future trends[J]. Remote Sensing of Environment, 2021, 260: 112477. doi: 10.1016/j.rse.2021.112477
    [33]
    陈中超, 刘清旺, 李春干, 等. 基于无人机激光雷达的人工林碳储量线性与非线性估测模型比较[J]. 北京林业大学学报, 2021, 43(12): 9-16. doi: 10.12171/j.1000-1522.20200417
    [34]
    ABD RAHMAN M Z, ABU BAKAR M A, RAZAK K A, et al. Non-destructive, laser-based individual tree aboveground biomass estimation in a tropical rainforest[J]. Forests, 2017, 8(3): 86. doi: 10.3390/f8030086
    [35]
    唐依人, 贾炜玮, 王帆, 等. 基于TLS辅助的长白落叶松一级枝条生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 130-140.
    [36]
    CHEN S, FENG Z, CHEN P, et al. Nondestructive estimation of the above-ground biomass of multiple tree species in boreal forests of china using terrestrial laser scanning[J]. Forests, 2019, 10(11): 936. doi: 10.3390/f10110936
    [37]
    刘鲁霞, 庞勇, 李增元. 基于地基激光雷达的亚热带森林单木胸径与树高提取[J]. 林业科学, 2016, 52(2): 26-37.
    [38]
    CALDERS K, ADAMS J, ARMSTON J, et al. Terrestrial laser scanning in forest ecology: Expanding the horizon[J]. Remote Sensing of Environment, 2020, 251: 112102. doi: 10.1016/j.rse.2020.112102
    [39]
    QI Y, COOPS N, DANIELS L, et al. Comparing tree attributes derived from quantitative structure models based on drone and mobile laser scanning point clouds across varying canopy cover conditions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192: 49-65. doi: 10.1016/j.isprsjprs.2022.07.021
    [40]
    ÅKERBLOM M, RAUMONEN P, MÄKIPÄÄ R, et al. Automatic tree species recognition with quantitative structure models[J]. Remote Sensing of Environment, 2017, 191: 1-12. doi: 10.1016/j.rse.2016.12.002
    [41]
    TERRYN L, CALDERS K, DISNEY M, et al. Tree species classification using structural features derived from terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 170-181. doi: 10.1016/j.isprsjprs.2020.08.009
    [42]
    HUI Z, CAI Z, XU P, et al. Tree species classification using optimized features derived from light detection and ranging point clouds based on fractal geometry and quantitative structure model[J]. Forests, 2023, 14(6): 1265. doi: 10.3390/f14061265
  • Cited by

    Periodical cited type(4)

    1. 宋鹏,李理想,江厚龙,王茹,李慧,赵鹏宇,张均,秦平伟,任江波,陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响. 浙江农业学报. 2024(03): 494-502 .
    2. 杜蓉惠,何涛,杜鸿燕,邓维萍,朱书生,杜飞. 枯草芽孢杆菌对‘红地球’葡萄白粉病防效及叶际细菌群落的影响. 中外葡萄与葡萄酒. 2024(03): 38-46 .
    3. 李妍,胡斯乐,白晓雄,刘朝斌,张敏,王迎,余旋. 核桃根际耐旱促生菌的分离筛选及其促生作用研究. 西北林学院学报. 2024(03): 84-92 .
    4. 吕嘉妍,毛健辉,霍春宇,黄永芳,罗连荷,梁家俊,陈祖静. 广东省本地油茶和引种油茶根际土壤微生物群落特征. 微生物学通报. 2023(11): 4938-4953 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return