Citation: | LIU Yinghan, REN Weizheng, ZHAO Lufeng, et al. Community structure and functional features of soil microbes in the rice-fish co-culture system[J]. Journal of South China Agricultural University, 2024, 45(6): 865-877. DOI: 10.7671/j.issn.1001-411X.202406032 |
This study aimed to investigate the soil microbial community structure of the rice-fish co-culture system (RF), and compare its microbial functions on carbon and nitrogen cycling to those of rice monoculture system (RM).
We sampled soil from paddies during the rice growth season at the site of the Qingtian rice-fish co-culture system, a globally important agricultural cultural heritage. Using high-throughput sequencing technology, we compared the structure and function of soil bacterial and archaeal communities between RF and RM.
RF significantly increased the α-diversity of bacterial and archaeal communities, while the dominant phyla or genera remained the same as RM. RF also improved the interactions among soil microbes and the functional diversity of dominant network modules, but its effect on network stability was unclear. Based on FAPROTAX prediction of functions, RF strengthened the positive relationship between methane oxidation and nitrogen fixation compared to RM. However, RF weakened the relationship between nitrification and methane production/denitrification, as well as the relationship between methane oxidation and denitrification. The canonical correlation analysis results demonstrated that, compared with RM, RF reduced the effects of soil organic matter, available N, and available P contents on soil microbial community structure but enhanced the effects of soil total phosphorus content and soil pH.
In Qingtian, the traditional rice-fish co-culture system increases the α-diversity of soil microbial communities, global microbial interactions, and the complexity of microbial networks. However, traditional RF weakens the relationships between different microbial functional groups involved in methane and nitrogen cycling. These findings provide a basis for further research on the microbial ecological processes in rice-aquatic animal co-culture systems.
[1] |
XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381-E1387.
|
[2] |
HALWART M, GUPTA M V. Culture of fish in rice fields[M]. Penang: FAO and the WorldFish Center, 2004.
|
[3] |
于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26.
|
[4] |
GUO L, ZHAO L F, YE J L, et al. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems[J]. eLife, 2022, 11: 73869. doi: 10.7554/eLife.73869
|
[5] |
HU L L, ZHANG J, REN W Z, et al. Can the co-cultivation of rice and fish help sustain rice production?[J]. Scientific Reports, 2016, 6: 28728. doi: 10.1038/s41598-016-0012-5
|
[6] |
李京咏, 戴林秀, 彭翔, 等. 氮肥减施对稻田综合种养水稻产量和品质的影响[J]. 中国稻米, 2023, 29(5): 28-37.
|
[7] |
李文博, 刘少君, 叶新新, 等. 稻田综合种养模式对土壤生态系统的影响研究进展[J]. 生态与农村环境学报, 2021, 37(10): 1292-1300.
|
[8] |
周榆淇, 邹冬生, 王安岽, 等. 长期淹水条件下稻鱼复合种养对土壤养分和酶活性的影响[J]. 农业现代化研究, 2022, 43(5): 911-920.
|
[9] |
CHEN B, GUO L, TANG J, et al. Comprehensive impacts of different integrated rice-animal co-culture systems on rice yield, nitrogen fertilizer partial factor productivity and nitrogen losses: A global meta-analysis[J]. Science of the Total Environment, 2024, 915: 169994. doi: 10.1016/j.scitotenv.2024.169994
|
[10] |
ARUNRAT N, SEREENONCHAI S. Assessing ecosystem services of rice-fish co-culture and rice monoculture in Thailand[J]. Agronomy, 2022, 12(5): 1241. doi: 10.3390/agronomy12051241
|
[11] |
SUN G, SUN M, DU L, et al. Ecological rice-cropping systems mitigate global warming-A meta-analysis[J]. Science of the Total Environment, 2021, 789: 147900. doi: 10.1016/j.scitotenv.2021.147900
|
[12] |
HARTMANN M, FREY B, MAYER J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. The ISME Journal, 2015, 9(5): 1177-1194. doi: 10.1038/ismej.2014.210
|
[13] |
丁姣龙. 稻鱼共生年限对耕层土壤养分与微生物影响研究[D]. 长沙: 湖南农业大学, 2021.
|
[14] |
REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture, Ecosystems & Environment, 2023, 348: 108399.
|
[15] |
陈佳, 赵璐峰, 戴然欣, 等. 稻鱼共生系统的土壤产甲烷和甲烷氧化微生物群落[J]. 生态学杂志, 2023, 42(12): 2961-2971.
|
[16] |
ZHAO L F, DAI R X, ZHANG T J, et al. Fish mediate surface soil methane oxidation in the agriculture heritage rice-fish system[J]. Ecosystems, 2023, 26(8): 1656-1669. doi: 10.1007/s10021-023-00856-y
|
[17] |
LIU X, JIA Q, SUN D, et al. Influence of nitrogen substitution at an equivalent total nitrogen level on bacterial and fungal communities, as well as enzyme activities of the ditch bottom soil in a rice-fish coculture system[J]. Journal of the Science of Food and Agriculture, 2024, 104(7): 4206-4217. doi: 10.1002/jsfa.13302
|
[18] |
WIELTSCHNIG C, FISCHER U R, VELIMIROV B, et al. Effects of deposit-feeding macrofauna on benthic bacteria, viruses, and protozoa in a silty freshwater sediment[J]. Microbial Ecology, 2008, 56(1): 1-12. doi: 10.1007/s00248-007-9318-y
|
[19] |
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x
|
[20] |
崔文超, 焦雯珺, 闵庆文. 不同土地经营模式的稻鱼共生系统环境影响评价[J]. 中国生态农业学报(中英文), 2022, 30(4): 630-640. doi: 10.12357/cjea.20210736
|
[21] |
REN W Z, HU L L, GUO L, et al. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3): E546-E554.
|
[22] |
NELSON D M, OHENE-ADJEI S, HU F S, et al. Bacterial diversity and distribution in the Holocene sediments of a northern temperate lake[J]. Microbial Ecology, 2007, 54(2): 252-263. doi: 10.1007/s00248-006-9195-9
|
[23] |
CALLAHAN B J, SANKARAN K, FUKUYAMA J A, et al. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses[J]. F1000Research, 2016, 5: 1492.
|
[24] |
CSARDI G, NEPUSZ T. The igraph software package for complex network research[J]. InterJournal, Complex Systems, 2006, 1695(5): 1-9.
|
[25] |
WATTS S C, RITCHIE S C, INOUYE M, et al. FastSpar: Rapid and scalable correlation estimation for compositional data[J]. Bioinformatics, 2019, 35(6): 1064-1066.
|
[26] |
CLAUSET A, NEWMAN M E, MOORE C. Finding community structure in very large networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(6 Pt 2): 066111.
|
[27] |
WEN T, XIE P H, YANG S D, et al. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts[J]. iMeta, 2022, 1(3): e32. doi: 10.1002/imt2.32
|
[28] |
GUO X, YUAN M, LEI J, et al. Climate warming restructures seasonal dynamics of grassland soil microbial communities[J]. mLife, 2022, 1(3): 245-256. doi: 10.1002/mlf2.12035
|
[29] |
WU H, GAO T H, HU A, et al. Network complexity and stability of microbes enhanced by microplastic diversity[J]. Environmental Science & Technology, 2024, 58(9): 4334-4345.
|
[30] |
LOUCA S, JACQUES S M S, PIRES A P F, et al. High taxonomic variability despite stable functional structure across microbial communities[J]. Nature Ecology & Evolution, 2016, 1(1): 15.
|
[31] |
中华人民共和国农业部. 土壤检测 第6部分: 土壤有机质的测定: NY/T 1121.6—2006[S]. 北京: 中国标准出版社, 2006.
|
[32] |
中华人民共和国农业部. 土壤检测 第24部分: 土壤全氮的测定自动定氮仪法: NY/T 1121.24—2012[S]. 北京: 中国标准出版社, 2012.
|
[33] |
中华人民共和国环境保护部. 土壤 氨氮、亚硝酸盐氮、硝酸盐氮的测定 氯化钾溶液提取−分光光度法: HJ 634—2012[S]. 北京: 中国环境科学出版社, 2012.
|
[34] |
中华人民共和国农业部. 中性、石灰性土壤铵态氮、有效磷、速效钾的测定 联合浸提−比色法: NY/T 1848—2010[S]. 北京: 中国农业出版社, 2010.
|
[35] |
ARUNRAT N, SANSUPA C, KONGSURAKAN P, et al. Soil microbial diversity and community composition in rice-fish co-culture and rice monoculture farming system[J]. Biology, 2022, 11(8): 1242.
|
[36] |
贾丽娟, 王广军, 夏耘, 等. 不同地区稻虾综合种养系统的微生物群落结构分析[J]. 水产学报, 2023, 47(6): 75-86.
|
[37] |
JIANG X, MA H, ZHAO Q L, et al. Bacterial communities in paddy soil and ditch sediment under rice-crab co-culture system[J]. AMB Express, 2021, 11(1): 163. doi: 10.1186/s13568-021-01323-4
|
[38] |
CAI W, LI Y, NIU L, et al. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures[J]. Water Research, 2017, 123: 495-504. doi: 10.1016/j.watres.2017.06.055
|
[39] |
罗衡, 赵良杰, 李丰, 等. 养殖鳖的引入对稻田土壤细菌群落结构的影响[J]. 水产学报, 2018, 42(5): 720-732.
|
[40] |
王昂, 戴丹超, 马旭洲, 等. 稻蟹共作模式对土壤微生物量氮和酶活性的影响[J]. 江苏农业学报, 2019, 35(1): 76-84.
|
[41] |
佀国涵, 彭成林, 徐祥玉, 等. 稻−虾共作模式对涝渍稻田土壤微生物群落多样性及土壤肥力的影响[J]. 土壤, 2016, 48(3): 503-509.
|
[42] |
YI X, YUAN J, ZHU Y, et al. Comparison of the abundance and community structure of N-cycling bacteria in paddy rhizosphere soil under different rice cultivation patterns[J]. International Journal of Molecular Sciences, 2018, 19(12): 3772. doi: 10.3390/ijms19123772
|
[43] |
CHEN L, XU J, WAN W T, et al. The Microbiome structure of a rice-crayfish integrated breeding model and its association with crayfish growth and water quality[J]. Microbiology Spectrum, 2022, 10(2): e02204-21.
|
[44] |
肖力婷, 杨慧林, 赖政, 等. 稻田土壤微生物群落对稻鳖共作模式的响应特征[J]. 农业工程学报, 2022, 38(24): 102-109. doi: 10.11975/j.issn.1002-6819.2022.24.011
|
[45] |
LIANG Y, XIAO X, NUCCIO E E, et al. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes[J]. Environmental Microbiology, 2020, 22(4): 1327-1340. doi: 10.1111/1462-2920.14945
|
[46] |
谷婕. 稻鱼生态系统中氮、磷的循环与迁移研究[D]. 长沙: 湖南农业大学, 2018.
|
[47] |
马祺聪. 稻鱼共作系统氮磷收支平衡与赋存形态[D]. 南京: 南京农业大学, 2020.
|
[48] |
张晓龙, 杨倩楠, 李祥东, 等. 不同稻田生态种养模式对土壤理化性质及综合肥力的影响[J]. 福建农业学报, 2023, 38(2): 202-209.
|
[49] |
LIN K, WU J. Effect of introducing frogs and fish on soil phosphorus availability dynamics and their relationship with rice yield in paddy fields[J]. Scientific Reports, 2020, 10: 21. doi: 10.1038/s41598-019-56644-z
|
[50] |
WANG C, YANG Q N, ZHANG C, et al. Rice-fish-duck system regulation of soil phosphorus fraction conversion and availability through organic carbon and phosphatase activity[J]. Frontiers in Environmental Science, 2022, 10: 979234. doi: 10.3389/fenvs.2022.979234
|
[51] |
HASSANI M A, DURÁN P, HACQUARD S. Microbial interactions within the plant holobiont[J]. Microbiome, 2018, 6(1): 58. doi: 10.1186/s40168-018-0445-0
|
[52] |
ZHANG B G, ZHANG J, LIU Y, et al. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale[J]. Soil Biology and Biochemistry, 2018, 118: 178-186. doi: 10.1016/j.soilbio.2017.12.011
|
[53] |
刘平平. 稻渔生态种养的土壤理化性质与微生物群落结构和多样性特征研究[D]. 南充: 西华师范大学, 2023.
|
[54] |
褚向乾, 吕卫光, 樊海丹, 等. 稻鳝种养模式对土壤氨氧化微生物群落多样性和结构的影响[J]. 农业环境科学学报, 2024, 43(6): 1350-1359. doi: 10.11654/jaes.2023-0660
|
[55] |
WU Y Y, LI Y, NIU L H, et al. Nutrient status of integrated rice-crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields[J]. Science of the Total Environment, 2022, 836: 155706. doi: 10.1016/j.scitotenv.2022.155706
|
[56] |
郑晗. 氮肥和养蟹对辽河三角洲水稻土微生物的影响[D]. 沈阳: 沈阳师范大学, 2022.
|
[57] |
YANG Z J, FENG Y M, ZHANG S L, et al. Effects of rice-prawn (Macrobrachium nipponense) co-culture on the microbial community of soil[J]. Applied Microbiology and Biotechnology, 2022, 106(21): 7361-7372. doi: 10.1007/s00253-022-12164-x
|
[58] |
FOSTER E A, FRANKS D W, MORRELL L J, et al. Social network correlates of food availability in an endangered population of killer whales, Orcinus orca[J]. Animal Behaviour, 2012, 83(3): 731-736. doi: 10.1016/j.anbehav.2011.12.021
|
[59] |
张军, 刘菁, 陈长青. 有机稻鸭共作对土壤理化性状和细菌群落空间分布的影响[J]. 生态学杂志, 2020, 39(3): 822-829.
|
[60] |
SHI S J, NUCCIO E E, SHI Z J, et al. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages[J]. Ecology Letters, 2016, 19(8): 926-936. doi: 10.1111/ele.12630
|
[61] |
ZHOU J Z, DENG Y, LUO F, et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. mBio, 2011, 2(4): 00122-11.
|
[62] |
那好为, 刘瑛涵, 赵璐峰, 等. 水稻品种间作对甲烷排放的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 270-279.
|
[63] |
SANSUPA C, WAHDAN S F M, HOSSEN S, et al. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria?[J]. Applied Sciences, 2021, 11(2): 688. doi: 10.3390/app11020688
|
[64] |
LANGILLE M G, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31: 814-821. doi: 10.1038/nbt.2676
|
1. |
田孟成,赖春燕,黄艺,任丽平. 不同共生鱼种对稻田作物产量土壤养分及酶活性的影响. 农业与技术. 2025(04): 26-30 .
![]() | |
2. |
林伟伟,林文雄. 多年稻鸭互作对水稻根际土壤菌落结构及其功能的影响. 福建技术师范学院学报. 2025(02): 60-67+75 .
![]() |