• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Jiehao, LIU Hongxian, LUO Qunfei, et al. Sliding mode tracking control of picking manipulator based on hyperbolic tangent function[J]. Journal of South China Agricultural University, 2025, 46(2): 238-245. DOI: 10.7671/j.issn.1001-411X.202406029
Citation: LI Jiehao, LIU Hongxian, LUO Qunfei, et al. Sliding mode tracking control of picking manipulator based on hyperbolic tangent function[J]. Journal of South China Agricultural University, 2025, 46(2): 238-245. DOI: 10.7671/j.issn.1001-411X.202406029

Sliding mode tracking control of picking manipulator based on hyperbolic tangent function

More Information
  • Received Date: June 20, 2024
  • Available Online: January 06, 2025
  • Published Date: December 30, 2024
  • Objective 

    To solve the problem of end trajectory tracking control in the application of mechanical arms in the agricultural field, and ensure the high-precision trajectory tracking and stable operation of the agricultural picking robot picking end.

    Method 

    It was suggested to use a hyperbolic tangent function-based sliding mode tracking control approach for a picking robot arm. A model of the manipulator dynamics based on the workspace was built using inverse kinematics, and a sliding mode tracking controller for the hyperbolic tangent function was created. The asymptotic stability of the control system was guaranteed by the Lyapunov function. The simulation control system of the manipulator was built in the MATLAB/Simulink environment to verify the control algorithm, and the tracking effect of the sliding mode controller on the end trajectory of the manipulator was analyzed.

    Result 

    The simulation test results showed that the sliding mode controller based on the hyperbolic tangent function achieved high-precision trajectory tracking and stable control, improved the convergence speed of the terminal trajectory tracking, reduced the robot end trajectory tracking control error, and reduced the convergence time of the terminal trajectory tracking curve by 50%, effectively improved the real-time performance and tracked accuracy of the robot picking system compared with the switching function sliding mode controller.

    Conclusion 

    The research can provide an effective control method for the practical application of robotic arm picking.

  • [1]
    刘成良, 贡亮, 苑进, 等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报, 2022, 53(7): 1-22. doi: 10.6041/j.issn.1000-1298.2022.07.001
    [2]
    陈青, 殷程凯, 郭自良, 等. 苹果采摘机器人关键技术研究现状与发展趋势[J]. 农业工程学报, 2023, 39(4): 1-15. doi: 10.11975/j.issn.1002-6819.202209041
    [3]
    赵春江, 范贝贝, 李瑾, 等. 农业机器人技术进展、挑战与趋势[J]. 智慧农业(中英文), 2023, 5(4): 1-15.
    [4]
    孙成宇, 闫建伟, 张富贵, 等. 蔬菜采摘机器人及其关键技术研究进展[J]. 中国农机化学报, 2023, 44(11): 63-72.
    [5]
    LI J H, WANG J Z, PENG H, et al. Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2491-2500. doi: 10.1109/TSMC.2021.3050616
    [6]
    TRAN D T, TRUONG H V A, AHN K K. Adaptive nonsingular fast terminal sliding mode control of robotic manipulator based neural network approach[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(3): 417-429. doi: 10.1007/s12541-020-00427-4
    [7]
    AHMED S, WANG H P, TIAN Y. Adaptive high-order terminal sliding mode control based on time delay estimation for the robotic manipulators with backlash hysteresis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 1128-1137. doi: 10.1109/TSMC.2019.2895588
    [8]
    MA Y J, ZHAO H, LI T. Robust adaptive dual layer sliding mode controller: Methodology and application of uncertain robot manipulator[J]. Transactions of the Institute of Measurement and Control, 2022, 44(4): 848-860. doi: 10.1177/01423312211025330
    [9]
    CHEN J X, LI J M. Fuzzy adaptive iterative learning coordination control of second-order multi-agent systems with imprecise communication topology structure[J]. International Journal of Systems Science, 2018, 49(3): 546-556. doi: 10.1080/00207721.2017.1412533
    [10]
    吴爱国, 刘海亭, 董娜. 机械臂神经网络非奇异快速终端滑模控制[J]. 农业机械学报, 2018, 49(2): 395-404. doi: 10.6041/j.issn.1000-1298.2018.02.051
    [11]
    李琦琦, 徐向荣, 张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520. doi: 10.3785/j.issn.1006-754X.2023.00.050
    [12]
    刘金琨. 滑模变结构控制MATLAB仿真: 先进控制系统设计方法[M]. 3版. 北京: 清华大学出版社, 2015: 192-195.
    [13]
    刘金琨. 机器人控制系统的设计与MATLAB仿真: 基本设计方法[M]. 北京: 清华大学出版社, 2016: 246-250.
    [14]
    张旭辉, 李语阳, 杨文娟, 等. 基于改进滑模控制的悬臂式掘进机轨迹跟踪控制[J]. 工程设计学报, 2024, 31(4): 491-501.
    [15]
    BAEK J, JIN M L, HAN S. A new adaptive sliding-mode control scheme for application to robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3628-3637. doi: 10.1109/TIE.2016.2522386
    [16]
    张蕾, 宋博雄, 田冬雨. 考虑输入饱和的机械臂轨迹跟踪滑模控制[J]. 西安工程大学学报, 2024, 38(2): 85-92.
    [17]
    贾华, 刘延俊, 王雨, 等. 六轴机械臂神经网络自适应终端滑模控制[J]. 西安交通大学学报, 2022, 56(11): 21-30. doi: 10.7652/xjtuxb202211003
    [18]
    LIN C J, SIE T Y, CHU W L, et al. Tracking control of pneumatic artificial muscle-activated robot arm based on sliding-mode control[J]. Actuators, 2021, 10(3): 66. doi: 10.3390/act10030066
    [19]
    WANG H Z, FANG L J, SONG T Z, et al. Model-free adaptive sliding mode control with adjustable funnel boundary for robot manipulators with uncertainties[J]. Review of Scientific Instruments, 2021, 92(6): 0037054. doi: 10.1063/5.0037054.
    [20]
    ZHAO J B, XIU B K, WANG J Z, et al. Adaptive task-space cooperative tracking control for manipulators with a desired trajectory estimator and a velocity observer[J]. International Journal of Robust and Nonlinear Control, 2022, 32(7): 4214-4235. doi: 10.1002/rnc.6017
    [21]
    倪元相, 刘芳. 输出反馈式神经网络的机械臂轨迹跟踪控制[J/OL]. 南京师范大学学报(自然科学版), (2023-09-19)[2024-12-27]. http://kns.cnki.net/kcms/detail/32.1239.n.20230918.1220.002.html.
    [22]
    陈明. 基于阻抗模型的双机器人对等协作控制研究[D]. 南京: 东南大学, 2018.
    [23]
    程志江, 李志文, 杜一鸣. 优化自抗扰的移动清洁机械臂轨迹跟踪控制[J]. 计算机集成制造系统, 2023, 29(12): 3993-4000.
  • Related Articles

    [1]HUANG Chengyu, CHEN Jianxin, ZHENG Xingyue, WU Fengjinglin, MA Huancheng, WU Jianrong. Identification of pathogen causing leaf spot disease of Parthenocissus tricuspidata and establishment of LAMP rapid detection system[J]. Journal of South China Agricultural University, 2025, 46(1): 89-96. DOI: 10.7671/j.issn.1001-411X.202401012
    [2]HUANG Rong, ZENG Jing, YANG Yuting, XI Pinggen, JIANG Zide, LI Minhui. Biological characteristics of the pathogen of guava wilt and screening of biocontrol bacteria and control agents[J]. Journal of South China Agricultural University, 2024, 45(3): 364-370. DOI: 10.7671/j.issn.1001-411X.202309006
    [3]LI Jin, TAN Dedong, QIU Jiping, YANG Changsheng, XU Gang, TAN Zhiyuan. Isolation and identification of endophytic bacteria from banana fusarium wilt resistant strains and their inhibitory and growth-promoting effects[J]. Journal of South China Agricultural University, 2024, 45(2): 256-265. DOI: 10.7671/j.issn.1001-411X.202308003
    [4]LI Qingrong, XING Dongxu, XIAO Yang, LIAO Sentai, ZOU Yuxiao, LIU Fan, LI Erna, ZHOU Donglai, YANG Qiong. Rhizosphere colonization of Bacillus subtilis biocontrol strain SEM-9 and the effect on microbial diversity in rhizosphere soil[J]. Journal of South China Agricultural University, 2022, 43(4): 82-88. DOI: 10.7671/j.issn.1001-411X.202107008
    [5]ZHOU Juan, LIANG Cheng-feng, XI Ping-gen, JIANG Zi-de. Identification of Pathogens Caused Eucalyptus spp. Die-Back from Guangdong Province[J]. Journal of South China Agricultural University, 2012, 33(2): 163-166. DOI: 10.7671/j.issn.1001-411X.2012.02.009
    [6]HUANG Jin-ling,LIU Ji-shuang,LIU Zhi-ming,LU Xiu-hong,PAN Ping-hong,LU Guang-yi,QIN Bi-xia,LI Guo-dong. Screening Biocontrol Bacteria to Vegetable Root-Knot Nematodes[J]. Journal of South China Agricultural University, 2010, 31(3): 119-120+122. DOI: 10.7671/j.issn.1001-411X.2010.03.027
    [7]LI Min-hui,XI Ping-gen,JIANG Zi-de,QI Pei-kun. Race Identification of Fusarium oxysporum f. sp.cubense,the Causal Agent of Banana Fusarium Wilt in Guangdong Province[J]. Journal of South China Agricultural University, 2007, 28(2): 38-41. DOI: 10.7671/j.issn.1001-411X.2007.02.010
    [8]SUN Si,WANG Jun. Pathogen Identification and Chemical Control of Brown Leaf Spot of Phoenix sylveseris[J]. Journal of South China Agricultural University, 2006, 27(3): 58-60. DOI: 10.7671/j.issn.1001-411X.2006.03.016
    [9]Chen Yongqiang, Qi Peikun, Jiang Zide. Identification of Phytophthora Species Causing Nine Floral Plants Blight in Guangzhou Region[J]. Journal of South China Agricultural University, 1999, (4): 5-9.
    [10]Ding Aidong Liu Chaozheng. IDENTIFICATION OF THE PATHOGEN CAUSING BACTERLAL BROWN SPOT OF Phalaemopsis aphrolite Reichb[J]. Journal of South China Agricultural University, 1993, (4): 124-126.
  • Cited by

    Periodical cited type(4)

    1. 周文灵,陈迪文,吴启华,方界群,敖俊华. 耕作措施对宿根甘蔗产量、碳排放及经济效益的影响. 中国生态农业学报(中英文). 2024(09): 1481-1491 .
    2. 王林林,徐珂,李正鹏,严清彪,胡发龙,尚琰隽,韩梅. 不同类型绿肥混播对土壤真菌群落结构和理化性质的影响. 江苏农业学报. 2024(12): 2273-2282 .
    3. 郑志杰,刘仁燕,陈宁,熊兴军,余辉亮,鄢紫薇,徐晗,胡荣桂,林杉. 三峡库区2种土地利用方式下土壤盐基离子及碳氮含量对氮添加的响应. 水土保持学报. 2023(01): 197-203 .
    4. 赵月琴,马秀静,赵琬婧,张治军,孙晓新. 三江平原垦殖湿地恢复对温室气体排放的影响. 应用生态学报. 2023(08): 2142-2152 .

    Other cited types(10)

Catalog

    Article views (43) PDF downloads (29) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return