LI Jiehao, LIU Hongxian, LUO Qunfei, et al. Sliding mode tracking control of picking manipulator based on hyperbolic tangent function[J]. Journal of South China Agricultural University, 2025, 46(2): 238-245. DOI: 10.7671/j.issn.1001-411X.202406029
    Citation: LI Jiehao, LIU Hongxian, LUO Qunfei, et al. Sliding mode tracking control of picking manipulator based on hyperbolic tangent function[J]. Journal of South China Agricultural University, 2025, 46(2): 238-245. DOI: 10.7671/j.issn.1001-411X.202406029

    Sliding mode tracking control of picking manipulator based on hyperbolic tangent function

    More Information
    • Received Date: June 20, 2024
    • Available Online: January 06, 2025
    • Published Date: December 30, 2024
    • Objective 

      To solve the problem of end trajectory tracking control in the application of mechanical arms in the agricultural field, and ensure the high-precision trajectory tracking and stable operation of the agricultural picking robot picking end.

      Method 

      It was suggested to use a hyperbolic tangent function-based sliding mode tracking control approach for a picking robot arm. A model of the manipulator dynamics based on the workspace was built using inverse kinematics, and a sliding mode tracking controller for the hyperbolic tangent function was created. The asymptotic stability of the control system was guaranteed by the Lyapunov function. The simulation control system of the manipulator was built in the MATLAB/Simulink environment to verify the control algorithm, and the tracking effect of the sliding mode controller on the end trajectory of the manipulator was analyzed.

      Result 

      The simulation test results showed that the sliding mode controller based on the hyperbolic tangent function achieved high-precision trajectory tracking and stable control, improved the convergence speed of the terminal trajectory tracking, reduced the robot end trajectory tracking control error, and reduced the convergence time of the terminal trajectory tracking curve by 50%, effectively improved the real-time performance and tracked accuracy of the robot picking system compared with the switching function sliding mode controller.

      Conclusion 

      The research can provide an effective control method for the practical application of robotic arm picking.

    • [1]
      刘成良, 贡亮, 苑进, 等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报, 2022, 53(7): 1-22. doi: 10.6041/j.issn.1000-1298.2022.07.001
      [2]
      陈青, 殷程凯, 郭自良, 等. 苹果采摘机器人关键技术研究现状与发展趋势[J]. 农业工程学报, 2023, 39(4): 1-15. doi: 10.11975/j.issn.1002-6819.202209041
      [3]
      赵春江, 范贝贝, 李瑾, 等. 农业机器人技术进展、挑战与趋势[J]. 智慧农业(中英文), 2023, 5(4): 1-15.
      [4]
      孙成宇, 闫建伟, 张富贵, 等. 蔬菜采摘机器人及其关键技术研究进展[J]. 中国农机化学报, 2023, 44(11): 63-72.
      [5]
      LI J H, WANG J Z, PENG H, et al. Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2491-2500. doi: 10.1109/TSMC.2021.3050616
      [6]
      TRAN D T, TRUONG H V A, AHN K K. Adaptive nonsingular fast terminal sliding mode control of robotic manipulator based neural network approach[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(3): 417-429. doi: 10.1007/s12541-020-00427-4
      [7]
      AHMED S, WANG H P, TIAN Y. Adaptive high-order terminal sliding mode control based on time delay estimation for the robotic manipulators with backlash hysteresis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 1128-1137. doi: 10.1109/TSMC.2019.2895588
      [8]
      MA Y J, ZHAO H, LI T. Robust adaptive dual layer sliding mode controller: Methodology and application of uncertain robot manipulator[J]. Transactions of the Institute of Measurement and Control, 2022, 44(4): 848-860. doi: 10.1177/01423312211025330
      [9]
      CHEN J X, LI J M. Fuzzy adaptive iterative learning coordination control of second-order multi-agent systems with imprecise communication topology structure[J]. International Journal of Systems Science, 2018, 49(3): 546-556. doi: 10.1080/00207721.2017.1412533
      [10]
      吴爱国, 刘海亭, 董娜. 机械臂神经网络非奇异快速终端滑模控制[J]. 农业机械学报, 2018, 49(2): 395-404. doi: 10.6041/j.issn.1000-1298.2018.02.051
      [11]
      李琦琦, 徐向荣, 张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520. doi: 10.3785/j.issn.1006-754X.2023.00.050
      [12]
      刘金琨. 滑模变结构控制MATLAB仿真: 先进控制系统设计方法[M]. 3版. 北京: 清华大学出版社, 2015: 192-195.
      [13]
      刘金琨. 机器人控制系统的设计与MATLAB仿真: 基本设计方法[M]. 北京: 清华大学出版社, 2016: 246-250.
      [14]
      张旭辉, 李语阳, 杨文娟, 等. 基于改进滑模控制的悬臂式掘进机轨迹跟踪控制[J]. 工程设计学报, 2024, 31(4): 491-501.
      [15]
      BAEK J, JIN M L, HAN S. A new adaptive sliding-mode control scheme for application to robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3628-3637. doi: 10.1109/TIE.2016.2522386
      [16]
      张蕾, 宋博雄, 田冬雨. 考虑输入饱和的机械臂轨迹跟踪滑模控制[J]. 西安工程大学学报, 2024, 38(2): 85-92.
      [17]
      贾华, 刘延俊, 王雨, 等. 六轴机械臂神经网络自适应终端滑模控制[J]. 西安交通大学学报, 2022, 56(11): 21-30. doi: 10.7652/xjtuxb202211003
      [18]
      LIN C J, SIE T Y, CHU W L, et al. Tracking control of pneumatic artificial muscle-activated robot arm based on sliding-mode control[J]. Actuators, 2021, 10(3): 66. doi: 10.3390/act10030066
      [19]
      WANG H Z, FANG L J, SONG T Z, et al. Model-free adaptive sliding mode control with adjustable funnel boundary for robot manipulators with uncertainties[J]. Review of Scientific Instruments, 2021, 92(6): 0037054. doi: 10.1063/5.0037054.
      [20]
      ZHAO J B, XIU B K, WANG J Z, et al. Adaptive task-space cooperative tracking control for manipulators with a desired trajectory estimator and a velocity observer[J]. International Journal of Robust and Nonlinear Control, 2022, 32(7): 4214-4235. doi: 10.1002/rnc.6017
      [21]
      倪元相, 刘芳. 输出反馈式神经网络的机械臂轨迹跟踪控制[J/OL]. 南京师范大学学报(自然科学版), (2023-09-19)[2024-12-27]. http://kns.cnki.net/kcms/detail/32.1239.n.20230918.1220.002.html.
      [22]
      陈明. 基于阻抗模型的双机器人对等协作控制研究[D]. 南京: 东南大学, 2018.
      [23]
      程志江, 李志文, 杜一鸣. 优化自抗扰的移动清洁机械臂轨迹跟踪控制[J]. 计算机集成制造系统, 2023, 29(12): 3993-4000.
    • Cited by

      Periodical cited type(3)

      1. 付鸿博,李杰,杨永超. 石榴CCD基因家族的鉴定与分析. 分子植物育种. 2025(08): 2511-2518 .
      2. 杜艳霞,王艺光,肖政,董彬,方遒,钟诗蔚,杨丽媛,赵宏波. 桂花OfNCED3调控转基因烟草叶片类胡萝卜素和叶绿素的合成. 园艺学报. 2023(06): 1284-1294 .
      3. 蔡肖,王海涛,李兴河,甄军波,刘琳琳,刘迪,迟吉娜,张建宏. 亚洲棉NCED3基因克隆及其抗旱功能分析. 核农学报. 2022(09): 1713-1722 .

      Other cited types(5)

    Catalog

      Article views (66) PDF downloads (41) Cited by(8)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return