MA Lan, MENG Qingmi, LI Jiayao, et al. Effects of increasing ditches and pits in rice field on intestinal structure, digestive enzyme activity and microbial community of Cyprinus carpio var. Jinbei[J]. Journal of South China Agricultural University, 2024, 45(6): 889-897. DOI: 10.7671/j.issn.1001-411X.202405036
    Citation: MA Lan, MENG Qingmi, LI Jiayao, et al. Effects of increasing ditches and pits in rice field on intestinal structure, digestive enzyme activity and microbial community of Cyprinus carpio var. Jinbei[J]. Journal of South China Agricultural University, 2024, 45(6): 889-897. DOI: 10.7671/j.issn.1001-411X.202405036

    Effects of increasing ditches and pits in rice field on intestinal structure, digestive enzyme activity and microbial community of Cyprinus carpio var. Jinbei

    More Information
    • Received Date: May 26, 2024
    • Available Online: August 20, 2024
    • Published Date: August 22, 2024
    • Objective 

      To explore the rice field adaptive characteristics of Cyprinus carpio var. Jinbei (goldenback carp), as well as the relationship between their gut and different rice field environments.

      Method 

      The study focused on the growth of goldenback carp in flat plate, “single line” ditch, and “cross-shaped” ditch rice fields, using morphological, enzymatic and bioinformatics methods to investigate the effects of adding ditches and pits in rice fields on the intestinal structure, digestive enzyme activities and microbial communities of the goldenback carp.

      Result 

      The villus width of goldenback carp intestine in “cross-shaped” ditch group was the widest (173.59 μm), followed by the “single line” ditch group (157.72 μm), and the flat plate group was the narrowest (139.69 μm). The trypsin activities of the “cross-shaped” ditch group and the “single line” ditch group were 4 662.65 and 4 676.12 U·mg−1 respectively, significantly higher than that of the flat plate group (3 752.34 U·mg−1) (P<0.05). At the phylum level, after adding ditches and pits in rice fields, Proteobacteria and Firmicutes remained dominant, but Actinobacteria replaced the Bacteroidetes as the dominant phylum. At the genus level, the dominant genera in the flat plate group were Streptococcus, Cetobacterium and Rhodobacter. There were obvious changes in the dominant genera of the “single line” ditch and “cross-shaped” ditch groups, among the top three dominant bacterial genera in each group, one changed in the “single line” ditch, and two changed in the “cross-shaped” ditch.

      Conclusion 

      The intestinal structure, digestive enzyme activity, microbial community and dominant bacterial groups of the goldenback carp change with the addition of ditches and pits in rice fields, regulating metabolism to adapt to the new rice field water environments. Despite the changes, the composition of the core intestinal flora of the goldenback carp remains relatively stable.

    • [1]
      叶茂林. 小议贵州出土的水塘稻田模型[J]. 贵州文史丛刊, 1990(4): 32-37.
      [2]
      张文争, 杨立, 姚俊杰, 等. 稻田金背鲤尾柄肌纤维特征及相关代谢酶与基因表达研究[J]. 南方水产科学, 2023, 19(4): 77-85. doi: 10.12131/20220320
      [3]
      JI D, SU X, YAO J J, et al. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in Guizhou, China[J]. Animals, 2022, 12(11): 1377. doi: 10.3390/ani12111377
      [4]
      张文争. 稻田养殖金背鲤肌肉生长及PI3K/AKt通路的研究[D]. 贵阳: 贵州大学, 2023.
      [5]
      莫飞龙, 韦玲静, 贾庆光, 等. 金边鲤稻田养殖对比试验[J]. 科学养鱼, 2021(9): 17-18. doi: 10.3969/j.issn.1004-843X.2021.09.009
      [6]
      李存玉, 徐永江, 柳学周, 等. 池塘和工厂化养殖牙鲆肠道菌群结构的比较分析[J]. 水产学报, 2015, 39(2): 245-255.
      [7]
      张红斌, 王秀利. 养殖鱼塘水质动态检测与分析[J]. 渔业致富指南, 2019(19): 63-68
      [8]
      LI Q, HONG M J, ZHANG Y M, et al. Research progress on gastro-intestinal tract microorganism of marine fishs[J]. Pharmaceutical Biotechnology, 2016, 23(6): 561-564.
      [9]
      KHOSRAVI S, RAHIMNEJAD S, HERAULT M, et al. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major[J]. Fish & Shellfish Immunology, 2015, 45(2): 858-868.
      [10]
      BOLNICK D I, SNOWBERG L K, CAPORASO J G, et al. Major Histocompatibility Complex class IIb polymorphism influences gut microbiota composition and diversity[J]. Molecular Ecology, 2014, 23(19): 4831-4845. doi: 10.1111/mec.12846
      [11]
      XIAO F S, ZHU W G, YU Y H, et al. Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota[J]. NPJ Biofilms and Microbiomes, 2021, 7: 5. doi: 10.1038/s41522-020-00176-2
      [12]
      马子尧, 潘红, 王开阔, 等. 2个鲤群体(Cyprinus carpio L.)表型生长性状的AI测量与手工测量的相关性分析[J]. 中国农学通报, 2024, 40(14): 157-164. doi: 10.11924/j.issn.1000-6850.casb2024-0057
      [13]
      于美娟, 杨慧, 余长生, 等. 两种养殖模式金背鲤肠道微生物菌群和主体风味差异分析[J]. 南方水产科学, 2023, 19(3): 151-163. doi: 10.12131/20220270
      [14]
      纪达, 许劲松, 姚俊杰, 等. 贵州省5个金背鲤(Cyprinus carpio var. Jinbei)地理种群的遗传多样性与遗传结构分析[J]. 水产学杂志, 2022, 35(5): 8-17. doi: 10.3969/j.issn.1005-3832.2022.05.002
      [15]
      DAWOOD M A O, MAGOUZ F I, MANSOUR M, et al. Evaluation of yeast fermented poultry by-product meal in Nile tilapia (Oreochromis niloticus) feed: Effects on growth performance, digestive enzymes activity, innate immunity, and antioxidant capacity[J]. Frontiers in Veterinary Science, 2020, 6: 516. doi: 10.3389/fvets.2019.00516
      [16]
      TSURUTA T, YAMAGUCHI M, ABE S, et al. Effect of fish in rice-fish culture on the rice yield[J]. Fisheries Science, 2011, 77(1): 95-106. doi: 10.1007/s12562-010-0299-2
      [17]
      ZHOU Y L, HE G L, JIN T, et al. High dietary starch impairs intestinal health and microbiota of largemouth bass, Micropterus salmoides[J]. Aquaculture, 2021, 534: 736261. doi: 10.1016/j.aquaculture.2020.736261
      [18]
      梁祖銮, 赵吉臣, 廖敏泽, 等. 不同生长阶段中国花鲈肠道和环境微生物群落分析[J]. 大连海洋大学学报, 2024, 39(2): 215-224.
      [19]
      王美茹, 崔鹏飞, 汝少国. 养殖水环境中抗生素对鱼类肠道菌群结构、功能和抗性组的影响研究进展[J]. 生态毒理学报, 2023, 18(3): 94-111. doi: 10.7524/AJE.1673-5897.20221031001
      [20]
      SAHANDI J, JAFARYAN H, SOLTANI M, et al. The use of two Bifidobacterium strains enhanced growth performance and nutrient utilization of rainbow trout (Oncorhynchus mykiss) fry[J]. Probiotics and Antimicrobial Proteins, 2019, 11(3): 966-972. doi: 10.1007/s12602-018-9455-2
      [21]
      于俊. 双歧杆菌对肉鸡生长性能、血清生化指标、肠道形态指标的影响[J]. 饲料研究, 2023, 46(6): 33-37.
      [22]
      ZHANG L, ZHANG R, JIA H, et al. Supplementation of probiotics in water beneficial growth performance, carcass traits, immune function, and antioxidant capacity in broiler chickens[J]. Open Life Sciences, 2021, 16(1): 311-322. doi: 10.1515/biol-2021-0031
      [23]
      ALBERDI A, AIZPURUA O, BOHMANN K, et al. Do vertebrate gut metagenomes confer rapid ecological adaptation?[J]. Trends in Ecology & Evolution, 2016, 31(9): 689-699.
      [24]
      WANG C, ZHOU Y, LV D, et al. Change in the intestinal bacterial community structure associated with environmental microorganisms during the growth of Eriocheir sinensis[J]. MicrobiologyOpen, 2019, 8(5): e727.
      [25]
      TZENG T, PAO Y Y, CHEN P C, et al. Effects of host phylogeny and habitats on gut microbiomes of oriental river prawn (Macrobrachium nipponense)[J]. PLoS One, 2015, 10(7): e0132860. doi: 10.1371/journal.pone.0132860
    • Cited by

      Periodical cited type(25)

      1. 胡兰梅,王丽娜,钱正敏,曹成全,魏福伦,唐艳龙. 生物农药印楝素对三叶虫萤幼虫的毒力测定. 湖北植保. 2025(01): 31-33 .
      2. 李俊杰,杨晓燕,唐慧琳,高俊恒,郭子坤,郭春阳,王冬寒,叶佳成,袁向群,李怡萍. 抑肽酶对防治梨小食心虫的两种植物源农药的增效作用. 植物保护学报. 2025(01): 105-112 .
      3. 薛育,侯则颖,王新谱. 苜蓿根瘤象成虫防控药剂筛选及助剂增效作用. 农业科学研究(中英文). 2025(01): 53-58 .
      4. 周陈杰,马闪闪,洪庆红,鲁吐浦拉,王肖庆,吴凯蝶,江文楠,张羽菲,王圣印. 13种杀虫剂对木橑尺蠖的室内毒力测定及田间防效. 甘肃农业大学学报. 2024(02): 171-178 .
      5. 常向前,吕亮,郑正安,王晶,邓颍骏,杨小林,王佐乾,张舒. 四种助剂对防治褐飞虱的植物源农药1%印楝素水分散粒剂毒力的影响. 昆虫学报. 2024(04): 490-497 .
      6. 赵秋兰,潘美佳,刘红芳. 紫堇乙醇提取物对草地贪夜蛾的杀虫活性及其成分分析. 南方农业. 2024(11): 48-51 .
      7. 舒本水,黄玉婷,余萱悦,刘翠婷,谢心怡,沈皓,林进添. 印楝素胁迫下草地贪夜蛾幼虫实时荧光定量PCR内参基因表达稳定性评价. 广东农业科学. 2024(08): 21-30 .
      8. 刘锦霞,李晶,张丹丹,李娜,付麟雲,丁品,吴孔明. 11种植物源杀虫活性成分对草地贪夜蛾的毒力测定. 植物保护. 2023(01): 351-356 .
      9. 刘琴,杨云福,刘现平,刘丽,成虹,李雪娇. 不同生物农药防治草地贪夜蛾试验效果. 云南农业. 2023(05): 65-67 .
      10. 冯磊,唐圣松,刘芳,戴长庚,邢济春,李鸿波. 7种生物杀虫剂对草地贪夜蛾和粘虫幼虫的毒力与防效. 环境昆虫学报. 2022(01): 35-43 .
      11. 黄阿国. 闽南地区草地贪夜蛾监测与田间药剂防治效果研究. 现代农业科技. 2022(06): 74-75+84 .
      12. 夏丽娟,李靖,梁竟宇,王学贵,朱新成,李彬,李涌泉. 印楝素对亚洲玉米螟的毒力与防效及对寄主作物高粱的安全性评价. 南京农业大学学报. 2022(03): 539-544 .
      13. 郭志敏,吕海翔,马康生,万虎,郭子平,李建洪. 7种生物源杀虫剂对草地贪夜蛾的室内毒力研究. 安徽农业科学. 2022(19): 139-143 .
      14. 雷琼,林鑫,巨亚绒. 6种农药对陕西省关中地区草地贪夜蛾的田间药效试验. 农业工程. 2022(08): 131-134 .
      15. 何文,张秀芬,黄珍玲,黄小娟,蒋婷,郭素云. 两种植物源杀虫剂对甘薯小象甲的室内防效. 农业研究与应用. 2022(06): 32-36 .
      16. Jing WAN,HUANG Cong,LI Chang-you,ZHOU Hong-xu,REN Yong-lin,LI Zai-yuan,XING Long-sheng,ZHANG Bin,QIAO Xi,LIU Bo,LIU Cong-hui,XI Yu,LIU Wan-xue,WANG Wen-kai,QIAN Wan-qiang,Simon MCKIRDY,WAN Fang-hao. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda(Lepidoptera: Noctuidae). Journal of Integrative Agriculture. 2021(03): 646-663 .
      17. 太一梅,李志敏,朱晓明,刘萍,李貌,毕金华,朱斌. 生物农药对草地贪夜蛾的田间防治效果. 中国植保导刊. 2021(03): 66-68+77 .
      18. 汤云霞,桑芝萍,赵健,潘丹丹. 沿海地区7种生物农药防治玉米田草地贪夜蛾的药效试验简报. 上海农业科技. 2021(03): 111-112+114 .
      19. 范建,杜红莲,汉瑞林,杨继琼,马玉梅,周立为. 3种生物药剂对玉米草地贪夜蛾的防治效果. 云南农业科技. 2021(05): 34-35 .
      20. 陈秀琴,刘其全,田新湖,何玉仙,邱良妙,占志雄. 草地贪夜蛾生物防治研究进展. 福建农业学报. 2021(08): 981-988 .
      21. 邵雪花,赖多,匡石滋. FOXO基因对印楝素诱导sf9细胞凋亡的影响. 广东农业科学. 2021(11): 96-102 .
      22. 张海波,王风良,陈永明,于淦军,褚姝频,卢鹏,陈华,朱加萍,车晋英,张芳,周福才. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究. 植物保护. 2020(02): 254-260 .
      23. 梁沛,谷少华,张雷,高希武. 我国草地贪夜蛾的生物学、生态学和防治研究概况与展望. 昆虫学报. 2020(05): 624-638 .
      24. 葛阳,孙嘉惠,王铁霖,石旺鹏,袁庆军,郭兰萍. 药源植物在草地贪夜蛾防控中的应用研究进展. 植物保护学报. 2020(04): 706-718 .
      25. 刘丁予,李昂. 3种生物农药对草地贪夜蛾的防效试验. 云南农业科技. 2020(S1): 11-13 .

      Other cited types(18)

    Catalog

      Article views PDF downloads Cited by(43)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return