• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LUO Xi’er, LU Xiaolong, LIU Qingyou, et al. Research progress on intelligent farming techniques of beef cattle[J]. Journal of South China Agricultural University, 2024, 45(5): 661-671. DOI: 10.7671/j.issn.1001-411X.202405032
Citation: LUO Xi’er, LU Xiaolong, LIU Qingyou, et al. Research progress on intelligent farming techniques of beef cattle[J]. Journal of South China Agricultural University, 2024, 45(5): 661-671. DOI: 10.7671/j.issn.1001-411X.202405032

Research progress on intelligent farming techniques of beef cattle

More Information
  • Received Date: May 21, 2024
  • Available Online: July 03, 2024
  • Published Date: July 07, 2024
  • Beef cattle intelligent farming technology is the key technology for the transformation and upgrading of beef cattle farming from extensive to intensive, and it plays an increasingly important role in enhancing farming efficiency and management efficiency. Domestic beef cattle farming industry faces outstanding problems such as low utilization rate of intelligent equipment, low farm management efficiency and high farming cost. This paper outlines the current research progress and status of beef cattle intelligent farming technology from six aspects, including beef cattle individual identification technology, intelligent phenotype collection technology, intelligent estrus identification technology, automated feeding technology, disease detection technology, as well as environmental monitoring and cleaning of the barn, etc., describes the application of the key technologies and the principles, and looks forward to the future development of beef cattle intelligent farming technology, with a view to providing a reference for China’s beef cattle aquaculture intelligent development.

  • [1]
    GREENWOOD P L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase[J]. Animal, 2021, 15: 100295. doi: 10.1016/j.animal.2021.100295
    [2]
    宋一凡, 王娟, 李建丽, 等. 精准化养殖模式下牛只个体识别方法综述[J]. 黑龙江畜牧兽医, 2021(22): 48-53.
    [3]
    AWAD A I. From classical methods to animal biometrics: A review on cattle identification and tracking[J]. Computers and Electronics in Agriculture, 2016, 123: 423-435. doi: 10.1016/j.compag.2016.03.014
    [4]
    DUROC Y, TEDJINI S. RFID: A key technology for Humanity[J]. Comptes Rendus Physique, 2018, 19(1/2): 64-71.
    [5]
    BARANOV A S, GRAML R, PIRCHNER F, et al. Breed differences and intra-breed genetic variability of dermatoglyphic pattern of cattle[J]. Journal of Animal Breeding and Genetics, 1993, 110(1/2/3/4/5/6): 385-392.
    [6]
    王斌. 牛个体面部识别算法研究与设计[D]. 呼和浩特: 内蒙古大学, 2022.
    [7]
    张宇. 基于深度学习的肉牛体侧识别方法研究[D]. 包头: 内蒙古科技大学, 2023.
    [8]
    刘爽. 基于深度学习的西门塔尔肉牛面部识别的研究[D]. 呼和浩特: 内蒙古大学, 2020.
    [9]
    BARRY B, GONZALES-BARRON U A, MCDONNELL K, et al. Using muzzle pattern recognition as a biometric approach for cattle identification[J]. Transactions of the ASABE, 2007, 50(3): 1073-1080. doi: 10.13031/2013.23121
    [10]
    KIM H T, CHOI H L, LEE D W, et al. Recognition of individual Holstein cattle by imaging body patterns[J]. Asian-Australasian Journal of Animal Sciences, 2005, 18(8): 1194-1198. doi: 10.5713/ajas.2005.1194
    [11]
    赵凯旋, 何东健. 基于卷积神经网络的奶牛个体身份识别方法[J]. 农业工程学报, 2015, 31(5): 181-187. doi: 10.3969/j.issn.1002-6819.2015.05.026
    [12]
    李征. 局部遮挡条件下的西门塔尔肉牛面部识别算法研究[D]. 呼和浩特: 内蒙古大学, 2022.
    [13]
    张晨鹏. 基于深度学习的牛脸检测与个体身份识别方法研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
    [14]
    WANGCHUK K, WANGDI J, MINDU M D. Comparison and reliability of techniques to estimate live cattle body weight[J]. Journal of Applied Animal Research, 2018, 46(1): 349-352. doi: 10.1080/09712119.2017.1302876
    [15]
    FIRDAUS F, ATMOKO B A, BALIARTI E, et al. The meta-analysis of beef cattle body weight prediction using body measurement approach with breed, sex, and age categories[J]. Journal of Advanced Veterinary and Animal Research, 2023, 10(4): 630.
    [16]
    BROWN D J, SAVAGE D B, HINCH G N, et al. Monitoring liveweight in sheep is a valuable management strategy: A review of available technologies[J]. Animal Production Science, 2015, 55(4): 427-436. doi: 10.1071/AN13274
    [17]
    GONZÁLEZ-GARCÍA E, ALHAMADA M, PRADEL J, et al. A mobile and automated walk-over-weighing system for a close and remote monitoring of liveweight in sheep[J]. Computers and Electronics in Agriculture, 2018, 153: 226-238. doi: 10.1016/j.compag.2018.08.022
    [18]
    ALDRIDGE M N, LEE S J, TAYLOR J D, et al. The use of walk over weigh to predict calving date in extensively managed beef herds[J]. Animal Production Science, 2016, 57(3): 583-591.
    [19]
    PARSONS I L, NORMAN D A, KARISCH B B, et al. Automated walk-over-weigh system to track daily body mass and growth in grazing steers[J]. Computers and Electronics in Agriculture, 2023, 212: 108113. doi: 10.1016/j.compag.2023.108113
    [20]
    GRITSENKO S, RUCHAY A, KOLPAKOV V, et al. On-barn forecasting beef cattle production based on automated non-contact body measurement system[J]. Animals, 2023, 13(4): 611. doi: 10.3390/ani13040611
    [21]
    LI J W, LI Q F, MA W H, et al. Key region extraction and body dimension measurement of beef cattle using 3D point clouds[J]. Agriculture, 2022, 12(7): 1012. doi: 10.3390/agriculture12071012
    [22]
    LI J W, MA W H, BAI Q, et al. A posture-based measurement adjustment method for improving the accuracy of beef cattle body size measurement based on point cloud data[J]. Biosystems Engineering, 2023, 230: 171-190. doi: 10.1016/j.biosystemseng.2023.04.014
    [23]
    SCHORI F, MUENGER A. Assessment of two wireless reticulo-rumen pH sensors for dairy cows[J]. Agrarforschung Schweiz, 2022, 13(2): 11-16.
    [24]
    SAINT-DIZIER M, CHASTANT-MAILLARD S. Potential of connected devices to optimize cattle reproduction[J]. Theriogenology, 2018, 112: 53-62. doi: 10.1016/j.theriogenology.2017.09.033
    [25]
    SCHWEINZER V, GUSTERER E, KANZ P, et al. Evaluation of an ear-attached accelerometer for detecting estrus events in indoor housed dairy cows[J]. Theriogenology, 2019, 130: 19-25. doi: 10.1016/j.theriogenology.2019.02.038
    [26]
    TSAI D M, HUANG C Y. A motion and image analysis method for automatic detection of estrus and mating behavior in cattle[J]. Computers and Electronics in Agriculture, 2014, 104: 25-31. doi: 10.1016/j.compag.2014.03.003
    [27]
    王少华, 何东健, 刘冬. 基于机器视觉的奶牛发情行为自动识别方法[J]. 农业机械学报, 2020, 51(4): 241-249. doi: 10.6041/j.issn.1000-1298.2020.04.028
    [28]
    王少华, 何东健. 基于改进YOLO v3模型的奶牛发情行为识别研究[J]. 农业机械学报, 2021, 52(7): 141-150. doi: 10.6041/j.issn.1000-1298.2021.07.014
    [29]
    LODKAEW T, PASUPA K, LOO C K. CowXNet: An automated cow estrus detection system[J]. Expert Systems with Applications, 2023, 211: 118550. doi: 10.1016/j.eswa.2022.118550
    [30]
    ARIKAN İ, AYAV T, SEÇKIN A Ç, et al. Estrus detection and dairy cow identification with cascade deep learning for augmented reality-ready livestock farming[J]. Sensors, 2023, 23(24): 9795. doi: 10.3390/s23249795
    [31]
    ANITAŞ Ö, GÖNCÜ S. Investigation of body secretions as bioindicators in cattle estrus detection[J]. Turkish Journal of Veterinary & Animal Sciences, 2020, 44(5): 1070-1086.
    [32]
    ALI A S, JACINTO J G, MΫNCHEMYER W, et al. Estrus detection in a dairy herd using an electronic nose by direct sampling on the perineal region[J]. Veterinary Sciences, 2022, 9(12): 688. doi: 10.3390/vetsci9120688
    [33]
    SUTHAR V, BURFEIND O, PATEL J, et al. Body temperature around induced estrus in dairy cows[J]. Journal of Dairy Science, 2011, 94(5): 2368-2373. doi: 10.3168/jds.2010-3858
    [34]
    ROELOFS J, VAN ERP-VAN DER KOOIJ E. Estrus detection tools and their applicability in cattle: Recent and perspectival situation[J]. Animal Reproduction, 2018, 12(3): 498-504.
    [35]
    AUNGIER S, ROCHE J, SHEEHY M, et al. Effects of management and health on the use of activity monitoring for estrus detection in dairy cows[J]. Journal of Dairy Science, 2012, 95(5): 2452-2466. doi: 10.3168/jds.2011-4653
    [36]
    FRIGGENS N, BJERRING M, RIDDER C, et al. Improved detection of reproductive status in dairy cows using milk progesterone measurements[J]. Reproduction in Domestic Animals, 2008, 43(S2): 113-121. doi: 10.1111/j.1439-0531.2008.01150.x
    [37]
    郑国生, 施正香, 滕光辉. 中国奶牛养殖设施装备技术研究进展[J]. 中国畜牧杂志, 2019, 55(7): 169-174.
    [38]
    HAMMON H, LIERMANN W, FRIETEN D, et al. Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves[J]. Animal, 2020, 14: s133-s143. doi: 10.1017/S1751731119003148
    [39]
    MEDRANO-GALARZA C, LEBLANC S J, DEVRIES T J, et al. A survey of dairy calf management practices among farms using manual and automated milk feeding systems in Canada[J]. Journal of Dairy Science, 2017, 100(8): 6872-6884. doi: 10.3168/jds.2016-12273
    [40]
    KENNY D, FITZSIMONS C, WATERS S, et al. Invited review: Improving feed efficiency of beef cattle: The current state of the art and future challenges[J]. Animal, 2018, 12(9): 1815-1826. doi: 10.1017/S1751731118000976
    [41]
    RAYNOR E J, DERNER J D, SODER K J, et al. Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures[J]. Applied Animal Behaviour Science, 2021, 242: 105402. doi: 10.1016/j.applanim.2021.105402
    [42]
    PEZESHKI A, STORDEUR P, WALLEMACQ H, et al. Variation of inflammatory dynamics and mediators in primiparous cows after intramammary challenge with Escherichia coli[J]. Veterinary Research, 2011, 42. doi: 10.1186/1297-9716-42-15.
    [43]
    VAN HERTEM T, BAHR C, TELLO A S, et al. Lameness detection in dairy cattle: Single predictor v. multivariate analysis of image-based posture processing and behaviour and performance sensing[J]. Animal, 2016, 10(9): 1525-1532. doi: 10.1017/S1751731115001457
    [44]
    JIANG B, SONG H, HE D. Lameness detection of dairy cows based on a double normal background statistical model[J]. Computers and Electronics in Agriculture, 2019, 158: 140-149. doi: 10.1016/j.compag.2019.01.025
    [45]
    VIAZZI S, BAHR C, VAN HERTEM T, et al. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows[J]. Computers and Electronics in Agriculture, 2014, 100: 139-147. doi: 10.1016/j.compag.2013.11.005
    [46]
    RODRÍGUEZ A, OLIVARES F, DESCOUVIERES P, et al. Thermographic assessment of hoof temperature in dairy cows with different mobility scores[J]. Livestock Science, 2016, 184: 92-96. doi: 10.1016/j.livsci.2015.12.006
    [47]
    STOKES J, LEACH K, MAIN D, et al. An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle[J]. Veterinary Journal, 2012, 193(3): 674-678. doi: 10.1016/j.tvjl.2012.06.052
    [48]
    ALSAAOD M, BÜSCHER W. Detection of hoof lesions using digital infrared thermography in dairy cows[J]. Journal of Dairy Science, 2012, 95(2): 735-742. doi: 10.3168/jds.2011-4762
    [49]
    NEETHIRAJAN S, TUTEJA S K, HUANG S T, et al. Recent advancement in biosensors technology for animal and livestock health management[J]. Biosensors and Bioelectronics, 2017, 98: 398-407. doi: 10.1016/j.bios.2017.07.015
    [50]
    GLOGENER P, KRAUSE M, KATZER J, et al. Prolonged corrosion stability of a microchip sensor implant during in vivo exposure[J]. Biosensors, 2018, 8(1): 13. doi: 10.3390/bios8010013
    [51]
    GRIESCHE C, BAEUMNER A J. Biosensors to support sustainable agriculture and food safety[J]. TrAC Trends in Analytical Chemistry, 2020, 128: 115906. doi: 10.1016/j.trac.2020.115906
    [52]
    VIDIC J, MANZANO M, CHANG C M, et al. Advanced biosensors for detection of pathogens related to livestock and poultry[J]. Veterinary Research, 2017, 48: 11. doi: 10.1186/s13567-017-0418-5
    [53]
    ZENG Z, ZENG F, HAN X, et al. Real-time monitoring of environmental parameters in a commercial gestating sow house using a zigbee-based wireless sensor network[J]. Applied Sciences, 2021, 11(3): 972. doi: 10.3390/app11030972
    [54]
    LELIVELD L M C, BRANDOLESE C, GROTTO M, et al. Real-time automatic integrated monitoring of barn environment and dairy cattle behaviour: Technical implementation and evaluation on three commercial farms[J]. Computers and Electronics in Agriculture, 2024, 216: 108499. doi: 10.1016/j.compag.2023.108499
  • Cited by

    Periodical cited type(5)

    1. 苏红梅,韩丽萍,刘俊华. 数字赋能内蒙古牛羊肉供应链绿色转型研究. 内蒙古社会科学. 2025(01): 205-212 .
    2. 梁金鑫,苑志宇,罗新惠,陈耿,吴毓瑾,王春昕. 家畜高通量体尺测量及体重预估技术研究进展. 中国畜牧兽医. 2025(02): 749-758 .
    3. 余仕亮. 云南省景东县肉牛疾病防治措施. 现代畜牧科技. 2025(04): 111-113 .
    4. 徐君鹏,时磊,王宇,杨文强,杨秋亚. 基于PLC的生猪养殖智能化环境监控及云平台系统设计. 河南科技学院学报(自然科学版). 2025(03): 44-53 .
    5. 赵晓霞,袁洪波,程曼. 利用深度学习实现羊只多目标跟踪. 河北农业大学学报. 2024(06): 24-31 .

    Other cited types(0)

Catalog

    Article views (733) PDF downloads (97) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return