• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WU Benli, HUANG Long, WU Cangcang, et al. Effect of feeding level on feeding ecology of Pelodiscus sinensis cultured in rice field[J]. Journal of South China Agricultural University, 2024, 45(6): 929-938. DOI: 10.7671/j.issn.1001-411X.202405028
Citation: WU Benli, HUANG Long, WU Cangcang, et al. Effect of feeding level on feeding ecology of Pelodiscus sinensis cultured in rice field[J]. Journal of South China Agricultural University, 2024, 45(6): 929-938. DOI: 10.7671/j.issn.1001-411X.202405028

Effect of feeding level on feeding ecology of Pelodiscus sinensis cultured in rice field

More Information
  • Received Date: May 16, 2024
  • Available Online: September 22, 2024
  • Published Date: September 17, 2024
  • Objective 

    The purpose of this study was to investigate the species and abundance of natural food for Chinese soft-shelled turtles (Pelodiscus sinensis) cultured in paddy fields under different feeding levels, explore the feeding ecology of P. sinensis in the rice-turtle co-culture mode, and provide a basis for optimizing the feeding strategy of comprehensive planting and breeding in rice fields and revealing the formation process and mechanism of ecological benefits.

    Method 

    The field feeding experiment was conducted with three feeding levels of 0.7%, 1.4% and 2.1%(w) for studying rice-turtle co-culture. Morphological analysis of stomach contents and environmental DNA analysis were conducted to determine the feeding habit of the natural food and commercial feeds for P. sinensis in different treatment groups. The relative importance index of different foods in treatments was also analyzed.

    Result 

    The feeding rate of P. sinensis increased with the increase of feeding level. In morphological analysis of stomach contents, 8 species of fish, 2 species of shrimp, 2 species of molluscs, 9 species of insects and rotifers were identified. The species with high occurrence rate included Abbottina rivularis, Pseudorasbora parva, Macrobrachium nipponense, Cipangopaludina chinensis, Polyarthra sp., Chironomidae larvae and Limnodrilus sp.. The occurrence rate and relative importance index proportion (IRIP) of commercial feeds increased with the increase of feeding level, while the IRIP of natural food decreased. The IRIP of commercial feeds was 91.97% when the feeding level was 2.1%, and the added IRIP of multiple natural foods was only 8.03%. In environmental DNA analysis, there were 16 species of fish with DNA relative abundance higher than 0.5%, and among them, A. rivularis, P. parva, Rhodeus sinensis, Hemiculter tchangi, Misgurnus anguillicaudatus, Paramisgurnus dabryanus, Carassius auratus and Hemisalanx brachyrostralis were also identified in morphology analysis of stomach contents. A total of 36 species of large aquatic vertebrates were identified, and the species with DNA relative abundance higher than 1.0% in stomach content samples mainly included Pseudochaeta sp. Janzen14, Palaemom modestus, Cipangopaludina chinensis, Chironomidae larvae, Limnodrilus sp., rotifer, etc.

    Conclusion 

    The natural food of P. sinensis includes small fish, molluscs, arthropods and rotifers, etc. Higher feeding level of commercial feeds results in lower feeding rate and IRIP of natural food, which may reduce the ecological benefits of co-culture.

  • [1]
    于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023, 573(8): 19-26.
    [2]
    WANG C, SHI X, QI Z, et al. How does rice-animal co-culture system affect rice yield and greenhouse gas? A meta-analysis[J]. Plant and Soil, 2023, 493: 325-340. doi: 10.1007/s11104-023-06233-x
    [3]
    何志刚. 稻渔综合种养生态系统中生物多样性, 营养与食物[J]. 湖南饲料, 2018(4): 13-17. doi: 10.3969/j.issn.1673-7539.2018.04.006
    [4]
    SIG H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice–crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7: 2856. doi: 10.1038/s41598-017-02984-7
    [5]
    刘其根, 李丰, 罗衡, 等. 引入养殖鳖对稻田土壤固氮菌的影响[J]. 应用与环境生物学报, 2018, 24: 483-492.
    [6]
    罗衡, 赵良杰, 李丰, 等. 养殖鳖的引入对稻田土壤细菌群落结构的影响[J]. 水产学报, 2018, 42: 720-732.
    [7]
    CAI S M, LV W G, ZHU H T, et al. Effect of nitrogen application rate on soil fungi community structure in a rice-fish mutualistic system[J]. Scientific Reports, 2019, 9: 16188. doi: 10.1038/s41598-019-52602-x
    [8]
    HU L L, REN W Z, TANG J J, et al. The productivity of traditional rice-fish co-culture can be increased without increasing nitrogen loss to the environment[J]. Agriculture, Ecosystems & Environment, 2013, 177: 28-34.
    [9]
    KOIZUMI N, MORI A, MINETA T, et al. Plant species identification using fecal DNAs from red-eared slider and Reeves’ pond turtle in agricultural canals for rural ecosystem conservation[J]. Paddy and Water Environment, 2017, 15(4): 723-730. doi: 10.1007/s10333-016-0576-5
    [10]
    盛瀛. 稻鳖共作对稻飞虱的防控效果[J]. 浙江农业科学, 2019, 60(6): 933-934.
    [11]
    WAN N F, LI S X, LI T, et al. Ecological intensification of rice production through rice-fish co-culture[J]. Journal of Cleaner Production, 2019, 234: 1002-1012. doi: 10.1016/j.jclepro.2019.06.238
    [12]
    XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387.
    [13]
    GE L, SUN Y, LI Y, et al. Ecosystem sustainability of rice and aquatic animal co-culture systems and a synthesis of its underlying mechanisms[J]. Science of the Total Environment, 2023, 880: 163314. doi: 10.1016/j.scitotenv.2023.163314
    [14]
    梁玉刚. 垄作稻鱼鸡共生系统水稻产量形成及其生态学效应研究[D]. 长沙: 湖南农业大学, 2020.
    [15]
    SUN C X, ZHANG D D, LIU W B, et al. Growth performance, digestion and metabolism to fish meal replacement by rice protein concentrate in Chinese soft-shelled turtle Pelodiscus sinensis[J]. Aquaculture, 2018, 492: 321-326. doi: 10.1016/j.aquaculture.2018.04.032
    [16]
    ZHANG J, HU L, REN W, et al. Rice-soft shell turtle coculture effects on yield and its environment[J]. Agriculture, Ecosystems & Environment, 2016, 224: 116-122.
    [17]
    GUO L, ZHAO L F, YE J L, et al. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems[J]. eLife, 2022, 11: 73869. doi: 10.7554/eLife.73869
    [18]
    ZHAO J, ZOU Y, CHEN H, et al. Effects of stocking density of Chinese soft-shelled turtle and interactions between cultivated species on growth performance and the environment in a turtle-rice coculture system[J]. Journal of the World Aquaculture Society, 2020, 51(3): 788-803. doi: 10.1111/jwas.12665
    [19]
    WU B L, CHEN J, HUANG L, et al. Dynamics of soil fertility and microbial community response to stocking density in rice-turtle co-culture[J]. Aquaculture Reports, 2021, 20: 100765. doi: 10.1016/j.aqrep.2021.100765
    [20]
    WU B L, HUANG L, WU C C, et al. Comparative analysis of the growth, physiological responses, and gene expression of Chinese soft-shelled turtles cultured in different modes[J]. Animals, 2024, 14(6): 962. doi: 10.3390/ani14060962
    [21]
    ASSAN D, HUANG Y, MUSTAPHA U F, et al. Fish feed intake, feeding behavior, and the physiological response of apelin to fasting and refeeding[J]. Frontiers in Endocrinology, 2021, 12: 798903. doi: 10.3389/fendo.2021.798903
    [22]
    KAUSSHIK S J. Feed management and on-farm feeding practices of temperate fish with special reference to salmonids[J]. FAO Fisheries and Aquaculture Technical Paper, 2013, 583: 519-551.
    [23]
    LUO L, LI T L, XING W, et al. Effects of feeding rates and feeding frequency on the growth performances of juvenile hybrid sturgeon, Acipenser schrenckii Brandt♀×A. baeri Brandt♂[J]. Aquaculture, 2015, 448: 229-233. doi: 10.1016/j.aquaculture.2015.06.005
    [24]
    李笑天, 刘宝良, 费凡, 等. 投喂策略对水产动物生长生理及行为特征影响研究进展[J]. 渔业现代化, 2020, 47(2): 7-15. doi: 10.3969/j.issn.1007-9580.2020.02.002
    [25]
    魏凤. 秸秆还田和投食对稻虾共作系统小龙虾食源和水生生物多样性的影响[D]. 武汉: 华中农业大学, 2023.
    [26]
    PARK J C, KODAMA K, OYAMA M, et al. Changes in feeding habits of the starspotted smooth-hound, Mustelus manazo, in Tokyo Bay between periods with different stock size levels[J]. Marine Pollution Bulletin, 2020, 152: 110863. doi: 10.1016/j.marpolbul.2019.110863
    [27]
    HU Y, YANG T, LIU Y, et al. High fish stocking density weakens the effects of rice-fish co-culture on water eutrophication and greenhouse gas emissions[J]. Water, Air, & Soil Pollution, 2022, 233(6): 222.
    [28]
    周勇, 李皓轩, 董洪瑞, 等. 基于小龙虾田间分布的稻虾共生机制探究[J]. 华中农业大学学报, 2022, 41(4): 202-209. doi: 10.3969/j.issn.1000-2421.2022.4.hznydx202204026
    [29]
    刘雯, 李娜, 鞠民, 等. 在不同稻渔共作模式下中小型土壤动物群落特征研究[J]. 江西师范大学学报(自然科学版), 2021, 45(2): 188-193.
    [30]
    ZHANG K, PENG H H, XIA Y, et al. Evaluating ecological mechanisms and optimization strategy of rice-fish co-culture system by ecosystem approach[J]. Aquaculture, 2022, 560: 738561. doi: 10.1016/j.aquaculture.2022.738561
    [31]
    DUAN M C, HU W H, LIU Y H, et al. The influence of landscape alterations on changes in ground beetle (Carabidae) and spider (Araneae) functional groups between 1995 and 2013 in an urban fringe of China[J]. Science of the Total Environment, 2019, 689: 516-525. doi: 10.1016/j.scitotenv.2019.06.198
    [32]
    申祺, 李蔚然, 于小彭, 等. 稻蟹共作对稻田生物影响的研究进展[J]. 北方水稻, 2021, 51(5): 59-62. doi: 10.3969/j.issn.1673-6737.2021.05.019
    [33]
    桑海旭, 马晓慧, 王井士, 等. 稻蟹共养对水稻有害生物控制效果评价[J]. 北方水稻, 2021, 51(2): 17-20. doi: 10.3969/j.issn.1673-6737.2021.02.004
    [34]
    蔡羽娟. 江汉平原稻农施药次数的影响因素及其对稻田节肢动物的影响[D]. 武汉: 华中农业大学, 2023.
    [35]
    陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用[J]. 生态学报, 2016, 36(15): 4573-4582.
    [36]
    ZHANG S, ZHENG Y T, ZHAN A B, et al. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity[J]. Science Advances, 2022, 8(6): eabk0097. doi: 10.1126/sciadv.abk0097
    [37]
    MÉHEUST E, ALFONSI E, LE MÉNEC P, et al. DNA-barcoding for the identification of soft remains of prey in the stomach contents of grey seals (Halichoerus grypus) and harbour porpoises (Phocoena phocoena)[J]. Marine Biology Research, 2015, 11(4): 385-395. doi: 10.1080/17451000.2014.943240
    [38]
    MORAN Z, ORTH D J, SCHMITT J D, et al. Effectiveness of DNA barcoding for identifying piscine prey items in stomach contents of piscivorous catfishes[J]. Environmental Biology of Fishes, 2016, 99(1): 161-167. doi: 10.1007/s10641-015-0448-7
  • Cited by

    Periodical cited type(25)

    1. 白尚旺,王梦瑶,胡静,陈志泊. 多区域注意力的细粒度图像分类网络. 计算机工程. 2024(01): 271-278 .
    2. 李名博,任东悦,郭俊旺,卫勇. 基于改进YOLOX-S的玉米病害识别. 江苏农业科学. 2024(03): 237-246 .
    3. 李显娜,吴强,张一丹,周康. 自监督学习下小样本番茄叶片病害检测. 中国农机化学报. 2024(07): 172-179 .
    4. 韩鹏飞,宋其江,贾梦实. 基于改进轻量化EfficientNet-V2模型的小麦种子分类. 中国农机化学报. 2024(09): 111-117 .
    5. 黄志龙. 基于改进YOLOv5s的番茄叶片病虫害识别方法. 电大理工. 2024(03): 1-7+17 .
    6. 高泉,刘笠溶,张洁,高颜军,叶荣. 基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计. 江苏农业科学. 2024(20): 220-227 .
    7. 刘拥民,刘翰林,石婷婷,欧阳金怡,黄浩,谢铁强. 一种优化的Swin Transformer番茄叶片病害识别方法. 中国农业大学学报. 2023(04): 80-90 .
    8. 陈从平,钮嘉炜,丁坤,姜金涛. 基于深度学习的马铃薯病害智能识别. 计算机仿真. 2023(02): 214-217+222 .
    9. 王磊,袁英,高玲. 基于改进多元宇宙算法的番茄病害图像识别. 中国农机化学报. 2023(05): 176-181+222 .
    10. 王明英,王嘉,裴志远,李宇豪,李荣荣. 基于深度学习的番茄叶部病害识别方法研究. 农业灾害研究. 2023(08): 25-27 .
    11. 李云红,张蕾涛,谢蓉蓉,朱景坤,刘杏瑞. 基于AT-DenseNet网络的番茄叶片病害识别方法. 江苏农业科学. 2023(21): 209-217 .
    12. 牛学德,高丙朋,南新元,石跃飞. 基于改进DenseNet卷积神经网络的番茄叶片病害检测. 江苏农业学报. 2022(01): 129-134 .
    13. 陆仲达,张春达,张佳奇,王子菲,许军华. 双分支网络的苹果叶部病害识别. 计算机科学与探索. 2022(04): 917-926 .
    14. 刘晓锋,高丽梅. 基于改进空间残差收缩网络模型的农作物病虫害识别. 山东农业大学学报(自然科学版). 2022(02): 259-264 .
    15. 徐志京,孙久武,霍煜豪. 多特征区域的细粒度船舶图像目标识别方法. 计算机工程与应用. 2022(10): 224-230 .
    16. 胡玲艳,周婷,刘艳,许巍,盖荣丽,李晓梅,裴悦琨,汪祖民. 基于轻量级网络自适应特征提取的番茄病害识别. 江苏农业学报. 2022(03): 696-705 .
    17. 贾兆红,张袁源,王海涛,梁栋. 基于Res2Net和双线性注意力的番茄病害时期识别方法. 农业机械学报. 2022(07): 259-266 .
    18. 赵子皓,杨再强. 番茄不同病害类型的图像特征精准识别仿真. 计算机仿真. 2022(10): 245-249 .
    19. 田佳鹭,邓立国. 结合嵌入模块的细粒度图像分类方法. 现代计算机. 2021(11): 106-110 .
    20. 张宁,吴华瑞,韩笑,缪祎晟. 基于多尺度和注意力机制的番茄病害识别方法. 浙江农业学报. 2021(07): 1329-1338 .
    21. 马宇,单玉刚,袁杰. 基于三通道注意力网络的番茄叶部病害识别. 科学技术与工程. 2021(25): 10789-10795 .
    22. 齐永锋,张宁宁. 基于多任务学习的番茄叶片图像病害程度分类. 光电子·激光. 2021(08): 833-840 .
    23. Wen Xin,Jia Yin-jiang,Su Zhong-bin. Identification of Typical Rice Diseases Based on Interleaved Attention Neural Network. Journal of Northeast Agricultural University(English Edition). 2021(04): 87-96 .
    24. 吴开兴,苗雪菲,马文妙. 基于卷积神经网络的番茄叶部病害识别研究. 电脑知识与技术. 2020(25): 25-27 .
    25. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 改进Multi-scale ResNet的蔬菜叶部病害识别. 农业工程学报. 2020(20): 209-217 .

    Other cited types(45)

Catalog

    Article views (348) PDF downloads (18) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return