Citation: | LI Longyi, WEI Zheng, LI Yici, et al. Effects of long-term low-input rice-fish co-culture on soil nutrient cycling and organic carbon pool stability[J]. Journal of South China Agricultural University, 2024, 45(6): 856-864. DOI: 10.7671/j.issn.1001-411X.202405021 |
To investigate the changes in soil organic carbon pool, nutrient stoichiometric ratios and so on under a long-term low-input rice-fish co-culture system, deeply analyze the carbon pool dynamics in the rice-fish system, and enhance its ecological functions.
The study focused on the long-term low-input rice-fish co-culture system in Chenxi County, a representative county of traditional rice-fish co-culture in Hunan. The changes in soil nutrient content, physical-chemical property, nutrient storage, organic carbon component, stoichiometric ratio and carbon pool indexes within the rice-fish co-culture systems, which have been in operation for 15 years (RF15) and 50 years (RF50), were analyzed, and the key influencing factors were explored.
Compared with rice monoculture (RM), RF15 showed significant reductions in soil organic carbon/total nitrogen/total phosphorus/nitrate nitrogen/ammonium nitrogen/available phosphorus contents, organic carbon storage/nitrogen storage/phosphorus storage, readily oxidized organic carbon content and its proportion in organic carbon; The C∶N, pH, particulate organic carbon content and its proportion, mineral-associated organic carbon content proportion, carbon pool activity, and carbon pool activity index increased significantly by 47.98%, 13.15%, 35.47%, 72.24%, 31.68%, 58.07%, and 58.07% respectively. RF50 showed significant increases in total nitrogen content, C∶P, N∶P, and nitrate nitrogen content by 13.13%, 33.08%, 14.31%, and 51.52% respectively, while total phosphorus content, volume weight, organic carbon storage, phosphorus storage, readily oxidized organic carbon content, mineral-associated organic carbon content and its proportion decreased significantly. The carbon pool management indexes in RF15 and RF50 remained stable overall, and were both greater than 100. Under the long-term rice-fish model, the environmental factors significantly related to the stability index of soil organic carbon pool were total nitrogen content, C∶N, and organic carbon storage.
Although the low-input rice-fish co-culture system may lead to nutrient loss, the extended self-maintenance of the system enables it to recover nutrient storage autonomously. Long-term rice-fish co-culture can improve soil quality, and improve the ecological environment of rice field. The findings provide a theoretical basis for optimizing the rice-fish co-culture system, which could help enhance its ecological functions and sustainability.
[1] |
郑华斌, 贺慧, 姚林, 等. 稻田饲养动物的生态经济效应及其应用前景[J]. 湿地科学, 2015, 13(4): 510-517.
|
[2] |
ISBELL F, CRAVEN D, CONNOLLY J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes[J]. Nature, 2015, 526(7574): 574-577. doi: 10.1038/nature15374
|
[3] |
RENARD D, TILMAN D. National food production stabilized by crop diversity[J]. Nature, 2019, 571(7764): 257-260. doi: 10.1038/s41586-019-1316-y
|
[4] |
于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26.
|
[5] |
WANG B, SUN Y, JIAO W. Ecological benefit evaluation of agricultural heritage system conservation: A case study of the Qingtian Rice-Fish Culture System[J]. Journal of Resources and Ecology, 2021, 12(4): 489-497.
|
[6] |
丁姣龙. 稻鱼共生年限对耕层土壤养分与微生物影响研究[D]. 长沙: 湖南农业大学, 2021.
|
[7] |
佀国涵, 袁家富, 彭成林, 等. 长期稻虾共作模式提高稻田土壤生物肥力的机理[J]. 植物营养与肥料学报, 2020, 26(12): 2168-2176. doi: 10.11674/zwyf.20374
|
[8] |
张苗苗, 宗良纲, 谢桐洲. 有机稻鸭共作对土壤养分动态变化和经济效益的影响[J]. 中国生态农业学报, 2010, 18(2): 256-260.
|
[9] |
朱练峰, 房伟平, 庄雪浩, 等. 稻蛙共作对土壤理化特性和水稻产量的影响[J]. 中国稻米, 2023, 29(5): 23-27.
|
[10] |
陈晓云, 孙文涛, 于凤泉, 等. 稻蟹生态种养模式对稻田土壤肥力及生产效益的影响[J]. 土壤通报, 2021, 52(5): 1165-1172.
|
[11] |
刘元生, 孟庆红, 何腾兵, 等. 稻田生态养鱼水质动态与水稻生长及经济效益研究[J]. 耕作与栽培, 2003(5): 5-6.
|
[12] |
XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381-E1387.
|
[13] |
吕广动, 黄璜, 梁玉刚, 等. 紫云英还田+稻鱼共生对水稻土壤养分及产量的影响[J]. 西南农业学报, 2020, 33(8): 1729-1735.
|
[14] |
孙刚, 房岩, 王欣, 等. 稻鱼复合种养对水田土壤酶活性的影响[J]. 农业与技术, 2009, 29(1): 23-26.
|
[15] |
展茗, 曹凑贵, 汪金平, 等. 稻鸭、稻鱼复合生态系统土壤微生物多样性特征分析[J]. 土壤学报, 2008, 45(6): 1179-1183. doi: 10.3321/j.issn:0564-3929.2008.06.024
|
[16] |
JIA B, TANG Y, TIAN L, et al. Impact of fish farming on phosphorus in reservoir sediments[J]. Scientific Reports, 2015, 5: 16617.
|
[17] |
闵宽洪, 郁桐炳. 浙江青田“稻鱼共生”系统发展的新模式: 从传统田鱼生产到现代渔业文化产业[J]. 中国渔业经济, 2009, 27(1): 25-28.
|
[18] |
ROSINGER C, ROUSK J, SANDÉN H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?: A critical assessment in two subtropical soils[J]. Soil Biology and Biochemistry, 2019, 128: 115-126. doi: 10.1016/j.soilbio.2018.10.011
|
[19] |
CHAPIN F S, MATSON P A, MOONEY H A, et al. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2002.
|
[20] |
DENG Q, CHENG X, HUI D, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. Science of the Total Environment, 2016, 541: 230-237. doi: 10.1016/j.scitotenv.2015.09.080
|
[21] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[22] |
章晓芳, 郑生猛, 夏银行, 等. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征[J]. 环境科学, 2020, 41(3): 1466-1473.
|
[23] |
顾晓娟, 于耀泓, 刘悦, 等. 华南典型人工林对土壤易氧化有机碳的影响[J]. 森林与环境学报, 2023, 43(2): 145-151.
|
[24] |
LUO X, HOU E, CHEN J, et al. Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China[J]. CATENA, 2020, 193: 104606. doi: 10.1016/j.catena.2020.104606
|
[25] |
BLAIR G J, LEFROY R D, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459
|
[26] |
林秋燕, 钟全林, 李宝银, 等. 氮磷添加对刨花楠幼林生长与叶性状及土壤养分关系的影响[J]. 应用与环境生物学报, 2023, 29(5): 1068-1076.
|
[27] |
李科江, 马俊永, 曹彩云, 等. 长期定位施用不同种类有机肥对作物产量及潮土理化性状的影响[J]. 河北农业科学, 2007(1): 60-63. doi: 10.3969/j.issn.1088-1631.2007.01.021
|
[28] |
何伟, 王会, 韩飞, 等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2): 425-434.
|
[29] |
齐智娟, 徐敬文, 张忠学, 等. 秸秆还田配施氮肥对黑土玉米田土壤CO2排放与碳平衡的影响[J]. 农业机械学报, 2024, 55(6): 284-293. doi: 10.6041/j.issn.1000-1298.2024.06.030
|
[30] |
沈建凯, 黄璜, 傅志强, 等. 稻鸭生态种养系统直播水稻根表和根际土壤营养特性研究[J]. 中国生态农业学报, 2010, 18(6): 1151-1156.
|
[31] |
张琴, 孟祥杰, 陈灿, 等. 不同稻、鸭、鱼共生模式对土壤质量及水稻生长发育的影响[J]. 江苏农业科学, 2023, 51(20): 58-67.
|
[32] |
李成芳. 稻田生态种养模式氮素转化规律的研究[D]. 武汉: 华中农业大学, 2008.
|
[33] |
陈佳, 赵璐峰, 戴然欣, 等. 稻鱼共生系统的土壤产甲烷和甲烷氧化微生物群落[J]. 生态学杂志, 2023, 42(12): 2961-2971.
|
[34] |
周榆淇, 邹冬生, 王安岽, 等. 长期淹水条件下稻鱼复合种养对土壤养分和酶活性的影响[J]. 农业现代化研究, 2022, 43(5): 911-920.
|
[35] |
GREENWAY H, ARMSTRONG W, COLMER T D. Conditions leading to high CO2 (> 5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism[J]. Annals of Botany, 2006, 98(1): 9-32. doi: 10.1093/aob/mcl076
|
[36] |
冯国禄, 李书迪, 许尤厚, 等. 撒施液体复合肥后不同蓄水深度的水分管理对稻田养分流失潜力的影响[J]. 中国土壤与肥料, 2018(1): 83-86. doi: 10.11838/sfsc.20180114
|
[37] |
张丹, 闵庆文, 成升魁, 等. 应用碳、氮稳定同位素研究稻田多个物种共存的食物网结构和营养级关系[J]. 生态学报, 2010, 30(24): 6734-6740.
|
[38] |
田兴, 邹利, 邓时铭, 等. 养殖禾花鲤对稻田土壤养分、微生物多样性的影响[J]. 江苏农业科学, 2023, 51(17): 191-197.
|
[39] |
马微微, 陈灿, 黄璜, 等. 垄作稻鱼鸡共生对稻田土壤养分含量及水稻产量的影响[J]. 河南农业科学, 2021, 50(8): 9-17.
|
[40] |
宋希娟, 杨成德, 陈秀蓉, 等. 东祁连山高寒草地生态系统N、P养分含量研究[J]. 草原与草坪, 2008(6): 46-49. doi: 10.3969/j.issn.1009-5500.2008.06.012
|
[41] |
钟建军, 李林, 魏识广, 等. 漓江流域喀斯特森林土壤碳氮磷储量分布特征及其影响因素[J]. 水土保持学报, 2023, 37(6): 180-186.
|
[42] |
WANG M, CHEN H, ZHANG W, et al. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China[J]. Science of the Total Environment, 2018, 619: 1299-1307.
|
[43] |
HUANG J, LIU L, QI K, et al. Differential mechanisms drive changes in soil C pools under N and P enrichment in a subalpine spruce plantation[J]. Geoderma, 2019, 340: 213-223. doi: 10.1016/j.geoderma.2019.01.027
|
[44] |
沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38.
|
[45] |
LIU Y, GE T, VAN GROENIGEN K J, et al. Rice paddy soils are a quantitatively important carbon store according to a global synthesis[J]. Communications Earth & Environment, 2021, 2(1): 154.
|
[46] |
MANLAY R J, FELLER C, SWIFT M. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J]. Agriculture Ecosystems & Environment, 2007, 119(3/4): 217-233.
|
[47] |
舒业勤, 彭复细, 雷文硕, 等. 稻油复种不同措施下土壤有机碳组分积累及其稳定性特征[J/OL]. 土壤学报 (2024-04-08) [2024-05-10]. https://link.cnki.net/urlid/32.1119.p.20240402.1444.002.
|
[48] |
薛志婧, 李霄云, 焦磊, 等. 土壤矿质结合态有机碳形成及稳定机制的研究进展[J]. 水土保持学报, 2023, 37(5): 12-23.
|
[49] |
COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019, 12(12): 989-994. doi: 10.1038/s41561-019-0484-6
|
[50] |
蓝贤瑾, 吕真真, 刘秀梅, 等. 长期施肥对红壤性水稻土颗粒有机质和矿物结合态有机质含量与化学组成的影响[J]. 土壤, 2021, 53(1): 140-147.
|
[51] |
WANG C, YANG Q, CHEN J, et al. Variations in soil organic carbon fractions and microbial community in rice fields under an integrated cropping system[J]. Agronomy, 2024, 14(1): 81.
|