• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHOU Yufeng, GAO Xin, DAI Wenqing, et al. Advances of nano-drug delivery systems in the prevention and control of drug-resistant pathogenic bacteria[J]. Journal of South China Agricultural University, 2025, 46(3): 287-300. DOI: 10.7671/j.issn.1001-411X.202405011
Citation: ZHOU Yufeng, GAO Xin, DAI Wenqing, et al. Advances of nano-drug delivery systems in the prevention and control of drug-resistant pathogenic bacteria[J]. Journal of South China Agricultural University, 2025, 46(3): 287-300. DOI: 10.7671/j.issn.1001-411X.202405011

Advances of nano-drug delivery systems in the prevention and control of drug-resistant pathogenic bacteria

More Information
  • Author Bio:

    ZHOU Yufeng:   周宇峰,博士,华南农业大学副教授,硕士生导师。长期从事兽医药代动力学、药动/药效学同步模型、抗菌药敏感性折点及细菌耐药控制策略等研究。主持国家自然科学基金面上项目及青年科学基金、“十四五”国家重点研发计划子课题、广东省自然科学基金面上项目等科研项目6项。以第一作者或通信作者在国际学术期刊发表SCI数据库收录论文20余篇,获省级科技奖励1项,获国家授权专利2项

  • Received Date: May 07, 2024
  • Revised Date: July 31, 2024
  • Accepted Date: August 13, 2024
  • Available Online: February 26, 2025
  • Published Date: March 05, 2025
  • The unregulated use of antimicrobial drugs and the evolution of bacterial selective pressure have led to an increasing number of drug-resistant pathogenic bacteria, which is a serious threat to livestock and poultry breeding as well as public health safety. With the development of nanotechnology, nano-drug delivery systems have shown a series of advantages in delivering antimicrobial drugs, such as improving the bioavailability of drugs, reducing the toxic side effects, and lowering the cost of drug use, which provide the new technologies and strategies for overcoming bacterial drug resistance. In this paper, we reviewed the progress of six nano-drug delivery system types of nanoemulsion, liposome, solid lipid nanoparticle, nano micelle, metal nanoparticle and nano gel in the prevention and control of drug-resistant pathogens, starting from the hazards of drug-resistant pathogens and the current status of their prevention and control in livestock and poultry. We expect to provide a reference for nano-drug delivery system application in the prevention and control of drug-resistant pathogen in livestock and poultry, and help the green and sustainable development of animal husbandry industry.

  • [1]
    VARELA M F, STEPHEN J, LEKSHMI M, et al. Bacterial resistance to antimicrobial agents[J]. Antibiotics, 2021, 10(5): 593. doi: 10.3390/antibiotics10050593.
    [2]
    THEURETZBACHER U, OUTTERSON K, ENGEL A, et al. The global preclinical antibacterial pipeline[J]. Nature Reviews Microbiology, 2020, 18(5): 275-285. doi: 10.1038/s41579-019-0288-0
    [3]
    MANCUSO G, MIDIRI A, GERACE E, et al. Bacterial antibiotic resistance: The most critical pathogens[J]. Pathogens, 2021, 10(10): 1310. doi: 10.3390/pathogens10101310.
    [4]
    MIETHKE M, PIERONI M, WEBER T, et al. Towards the sustainable discovery and development of new antibiotics[J]. Nature Reviews Chemistry, 2021, 5(10): 726-749. doi: 10.1038/s41570-021-00313-1
    [5]
    ELERAKY N E, ALLAM A, HASSAN S B, et al. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations[J]. Pharmaceutics, 2020, 12(2): 142. doi: 10.3390/pharmaceutics12020142.
    [6]
    MOFFO F, MOUICHE M M M, DJOMGANG H K, et al. Poultry litter contamination by Escherichia coli resistant to critically important antimicrobials for human and animal use and risk for public health in Cameroon[J]. Antibiotics, 2021, 10(4): 402. doi: 10.3390/antibiotics10040402.
    [7]
    SARAIVA M D S, LIM K, DO MONTE D F M, et al. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry[J]. Brazilian Journal of Microbiology, 2022, 53(1): 465-486. doi: 10.1007/s42770-021-00635-8
    [8]
    HEDMAN H D, VASCO K A, ZHANG L. A review of antimicrobial resistance in poultry farming within low-resource settings[J]. Animals, 2020, 10(8): 1264. doi: 10.3390/ani10081264.
    [9]
    LEÓN-BUITIMEA A, GARZA-CÁRDENAS C R, GARZA-CERVANTES J A, et al. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design[J]. Frontiers in Microbiology, 2020, 11: 1669. doi: 10.3389/fmicb.2020.01669.
    [10]
    马天玥, 朱尤卓, 余冰欣, 等. 抗菌肽的作用机制与临床应用研究进展[J]. 抗感染药学, 2023, 20(5): 447-452.
    [11]
    DĄBROWSKA K, ABEDON S T. Pharmacologically aware phage therapy: Pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies[J]. Microbiology and Molecular Biology Reviews, 2019, 83(4): e00012-19. doi: 10.1128/MMBR.00012-19
    [12]
    董晨扬, 魏曼琳, 张航, 等. 植物提取物在动物生产中的研究进展[J]. 饲料研究, 2022, 45(4): 136-139.
    [13]
    HAJIPOUR M J, FROMM K M, AKBAR ASHKARRAN A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012, 30(10): 499-511. doi: 10.1016/j.tibtech.2012.06.004
    [14]
    WANG Y, YANG Y, SHI Y, et al. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives[J]. Advanced Materials, 2020, 32(18): e1904106. doi: 10.1002/adma.201904106
    [15]
    LOIRA-PASTORIZA C, TODOROFF J, VANBEVER R. Delivery strategies for sustained drug release in the lungs[J]. Advanced Drug Delivery Reviews, 2014, 75: 81-91. doi: 10.1016/j.addr.2014.05.017
    [16]
    HOCHVALDOVÁ L, VEČEŘOVÁ R, KOLÁŘ M, et al. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis[J]. Nanotechnology Reviews, 2022, 11(1): 1115-1142. doi: 10.1515/ntrev-2022-0059
    [17]
    WANG Y, ZHANG Y, SU R, et al. Antimicrobial therapy based on self-assembling peptides[J]. Journal of Materials Chemistry B, 2024, 12(21): 5061-5075. doi: 10.1039/D4TB00260A
    [18]
    MOREIRA L, GUIMARÃES N M, SANTOS R S, et al. Promising strategies employing nucleic acids as antimicrobial drugs[J]. Molecular Therapy-Nucleic Acids, 2024, 35(1): 102122. doi: 10.1016/j.omtn.2024.102122.
    [19]
    PANDEY P, GULATI N, MAKHIJA M, et al. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability[J]. Recent Patents on Nanotechnology, 2020, 14(4): 276-293. doi: 10.2174/1872210514666200604145755
    [20]
    GARCIA C R, MALIK M H, BISWAS S, et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils[J]. Biomaterials Science, 2022, 10(3): 633-653. doi: 10.1039/D1BM01537K
    [21]
    MOGHIMI R, GHADERI L, RAFATI H, et al. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli[J]. Food Chemistry, 2016, 194: 410-415. doi: 10.1016/j.foodchem.2015.07.139
    [22]
    RYU V, MCCLEMENTS D J, CORRADINI M G, et al. Natural antimicrobial delivery systems: Formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions[J]. Food Hydrocolloids, 2018, 82: 442-450. doi: 10.1016/j.foodhyd.2018.04.017
    [23]
    MOHAMED M A, NASR M, ELKHATIB W F, et al. In vitro evaluation of antimicrobial activity and cytotoxicity of different nanobiotics targeting multidrug resistant and biofilm forming Staphylococci[J]. BioMed Research International, 2018, 2018: 7658238. doi: 10.1155/2018/7658238.
    [24]
    MOGHIMI R, ALIAHMADI A, RAFATI H, et al. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii[J]. Journal of Molecular Liquids, 2018, 265: 765-770. doi: 10.1016/j.molliq.2018.07.023
    [25]
    CONFESSOR M V A, AGRELES M A A, CAMPOS L A D, et al. Olive oil nanoemulsion containing curcumin: Antimicrobial agent against multidrug-resistant bacteria[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 241. doi: 10.1007/s00253-024-13057-x.
    [26]
    HASHEM A H, DOGHISH A S, ISMAIL A, et al. A novel nanoemulsion based on clove and thyme essential oils: Characterization, antibacterial, antibiofilm and anticancer activities[J]. Electronic Journal of Biotechnology, 2024, 68: 20-30. doi: 10.1016/j.ejbt.2023.12.001
    [27]
    陈小楠, 申元娜, 李彭宇, 等. 细菌生物膜的特征及抗细菌生物膜策略[J]. 药学学报, 2018, 53(12): 2040-2049.
    [28]
    MOHAMED H R H, EL-SHAMY S, ABDELGAYED S S, et al. Modulation efficiency of clove oil nano-emulsion against genotoxic, oxidative stress, and histological injuries induced via titanium dioxide nanoparticles in mice[J]. Scientific Reports, 2024, 14(1): 7715. doi: 10.1038/s41598-024-57728-1.
    [29]
    OZTURK B, ARGIN S, OZILGEN M, et al. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin[J]. Journal of Food Engineering, 2014, 142: 57-63. doi: 10.1016/j.jfoodeng.2014.06.015
    [30]
    AZEEM A, RIZWAN M, AHMAD F J, et al. Nanoemulsion components screening and selection: A technical note[J]. Aaps Pharmscitech, 2009, 10(1): 69-76. doi: 10.1208/s12249-008-9178-x
    [31]
    吴毅, 金少鸿. 药用辅料吐温80的药理、药动学及分析方法研究进展[J]. 中国药事, 2008, 22(8): 717-720.
    [32]
    李秀英, 曾凡, 赵曜, 等. 脂质体药物递送系统的研究进展[J]. 中国新药杂志, 2014, 23(16): 1904-1911.
    [33]
    ZHANG H, WANG G, YANG H. Drug delivery systems for differential release in combination therapy[J]. Expert Opinion on Drug Delivery, 2011, 8(2): 171-190. doi: 10.1517/17425247.2011.547470
    [34]
    MIRZAIE A, PEIROVI N, AKBARZADEH I, et al. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus[J]. Bioorganic Chemistry, 2020, 103: 104231. doi: 10.1016/j.bioorg.2020.104231.
    [35]
    GHOSH R, DE M. Liposome-based antibacterial delivery: An emergent approach to combat bacterial infections[J]. ACS Omega, 2023, 8(39): 35442-35451. doi: 10.1021/acsomega.3c04893
    [36]
    SCHEEDER A, BROCKHOFF M, WARD E N, et al. Molecular mechanisms of cationic fusogenic liposome interactions with bacterial envelopes[J]. Journal of the American Chemical Society, 2023, 145(51): 28240-28250. doi: 10.1021/jacs.3c11463
    [37]
    GUO R, LIU Y, LI K, et al. Direct interactions between cationic liposomes and bacterial cells ameliorate the systemic treatment of invasive multidrug-resistant Staphylococcus aureus infections[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2021, 34: 102382. doi: 10.1016/j.nano.2021.102382.
    [38]
    WANG Y. Liposome as a delivery system for the treatment of biofilm-mediated infections[J]. Journal of Applied Microbiology, 2021, 131(6): 2626-2639. doi: 10.1111/jam.15053
    [39]
    DYMEK M, SIKORA E. Liposomes as biocompatible and smart delivery systems: The current state[J]. Advances in Colloid and Interface Science, 2022, 309: 102757. doi: 10.1016/j.cis.2022.102757.
    [40]
    HERRERA C V, O’CONNOR P M, RATREY P, et al. Anionic liposome formulation for oral delivery of thuricin CD, a potential antimicrobial peptide therapeutic[J]. International Journal of Pharmaceutics, 2024, 654: 123918. doi: 10.1016/j.ijpharm.2024.123918.
    [41]
    SINGH S, SINGH S K, CHOWDHURY I, et al. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents[J]. The Open Microbiology Journal, 2017, 11: 53-62. doi: 10.2174/1874285801711010053
    [42]
    RAO Y, SUN Y Y, HU H Y, et al. Hypoxia-sensitive adjuvant loaded liposomes enhance the antimicrobial activity of azithromycin via phospholipase-triggered releasing for Pseudomonas aeruginosa biofilms eradication[J]. International Journal of Pharmaceutics, 2022, 623: 121910. doi: 10.1016/j.ijpharm.2022.121910.
    [43]
    BARRAUD N, HASSETT D J, HWANG S H, et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2006, 188(21): 7344-7353. doi: 10.1128/JB.00779-06
    [44]
    CUTRUZZOLÀ F, FRANKENBERG-DINKEL N. Origin and impact of nitric oxide in Pseudomonas aeruginosa biofilms[J]. Journal of Bacteriology, 2016, 198(1): 55-65. doi: 10.1128/JB.00371-15
    [45]
    MANCONI M, CADDEO C, MANCA M L, et al. Oral delivery of natural compounds by phospholipid vesicles[J]. Nanomedicine, 2020, 15(18): 1795-1803. doi: 10.2217/nnm-2020-0085
    [46]
    WANG X, CHENG F, WANG X, et al. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes[J]. International Journal of Biological Macromolecules, 2021, 168: 59-66. doi: 10.1016/j.ijbiomac.2020.12.003
    [47]
    BOZZUTO G, MOLINARI A. Liposomes as nanomedical devices[J]. International Journal of Nanomedicine, 2015, 10: 975-999.
    [48]
    XU M, HU Y, XIAO Y, et al. Near-infrared-controlled nanoplatform exploiting photothermal promotion of peroxidase-like and OXD-like activities for potent antibacterial and anti-biofilm therapies[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50260-50274.
    [49]
    VIEGAS C, PATRÍCIO A B, PRATA J M, et al. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review[J]. Pharmaceutics, 2023, 15(6): 1593. doi: 10.3390/pharmaceutics15061593.
    [50]
    GHADERKHANI J, YOUSEFIMASHOUF R, ARABESTANI M, et al. Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 1181-1193. doi: 10.1080/21691401.2019.1593858
    [51]
    SEVERINO P, CHAUD M V, SHIMOJO A, et al. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies[J]. Colloids and Surfaces B: Biointerfaces, 2015, 129: 191-197. doi: 10.1016/j.colsurfb.2015.03.049
    [52]
    SINGH M, SCHIAVONE N, PAPUCCI L, et al. Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 160: 100-124. doi: 10.1016/j.ejpb.2021.01.009
    [53]
    SCIOLI MONTOTO S, MURACA G, RUIZ M E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects[J]. Frontiers in Molecular Biosciences, 2020, 7: 587997. doi: 10.3389/fmolb.2020.587997.
    [54]
    ANJUM M M, PATEL K K, DEHARI D, et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: Chitosan and DNase coating improves antimicrobial activity[J]. Drug Delivery and Translational Research, 2021, 11(1): 305-317. doi: 10.1007/s13346-020-00795-4
    [55]
    COSTA A, SARMENTO B, SEABRA V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages[J]. European Journal of Pharmaceutical Sciences, 2018, 114: 103-113. doi: 10.1016/j.ejps.2017.12.006
    [56]
    DOLATABADI J E N, OMIDI Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems[J]. TrAC-Trends in Analytical Chemistry, 2016, 77: 100-108. doi: 10.1016/j.trac.2015.12.016
    [57]
    LI X Z, PLÉSIAT P, NIKAIDO H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria[J]. Clinical Microbiology Reviews, 2015, 28(2): 337-418. doi: 10.1128/CMR.00117-14
    [58]
    GONZÁLEZ-PAREDES A, SITIA L, RUYRA A, et al. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134: 166-177. doi: 10.1016/j.ejpb.2018.11.017
    [59]
    HIBBITTS A, LUCÍA A, SERRANO-SEVILLA I, et al. Co-delivery of free vancomycin and transcription factor decoy-nanostructured lipid carriers can enhance inhibition of methicillin resistant Staphylococcus aureus (MRSA)[J]. PLoS One, 2019, 14(9): e0220684. doi: 10.1371/journal.pone.0220684
    [60]
    BERMUDEZ L E M, WU M, YOUNG L S. Intracellular killing of Mycobacterium avium complex by rifapentine and liposome-encapsulated amikacin[J]. The Journal of Infectious Diseases, 1987, 156(3): 510-513. doi: 10.1093/infdis/156.3.510
    [61]
    TAWFIK S M, AZIZOV S, ELMASRY M R, et al. Recent advances in nanomicelles delivery systems[J]. Nanomaterials, 2020, 11(1): 70. doi: 10.3390/nano11010070.
    [62]
    MOHAMED S, PARAYATH N N, TAURIN S, et al. Polymeric nano-micelles: Versatile platform for targeted delivery in cancer[J]. Therapeutic Delivery, 2014, 5(10): 1101-1121. doi: 10.4155/tde.14.69
    [63]
    YANG X, QIU Q, LIU G, et al. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria[J]. Journal of Controlled Release, 2022, 341: 329-340. doi: 10.1016/j.jconrel.2021.11.037
    [64]
    LU C, XIAO Y, LIU Y, et al. Hyaluronic acid-based levofloxacin nanomicelles for nitric oxide-triggered drug delivery to treat bacterial infections[J]. Carbohydrate Polymers, 2020, 229: 115479. doi: 10.1016/j.carbpol.2019.115479.
    [65]
    GAO Q, HUANG D, DENG Y, et al. Chlorin e6 (Ce6)-loaded supramolecular polypeptide micelles with enhanced photodynamic therapy effect against Pseudomonas aeruginosa[J]. Chemical Engineering Journal, 2021, 417: 129334. doi: 10.1016/j.cej.2021.129334.
    [66]
    MORTEZA M, ROYA S, HAMED H, et al. Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity[J]. Drug Delivery, 2019, 26(1): 1292-1299. doi: 10.1080/10717544.2019.1693708
    [67]
    PARK S C, KO C, HYEON H, et al. Imaging and targeted antibacterial therapy using chimeric antimicrobial peptide micelles[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54306-54315.
    [68]
    GUPTA C, HAZRA C, PODDAR P, et al. Development and performance evaluation of self-assembled pH-responsive curcumin-bacterial exopolysaccharide micellar conjugates as bioactive delivery system[J]. International Journal of Biological Macromolecules, 2024, 263: 130372. doi: 10.1016/j.ijbiomac.2024.130372.
    [69]
    SOUSA A, BORØY V, BÆVERUD A, et al. Polymyxin B stabilized DNA micelles for sustained antibacterial and antibiofilm activity against P. aeruginosa[J]. Journal of Materials Chemistry B, 2023, 11(33): 7972-7985. doi: 10.1039/D3TB00704A
    [70]
    JAMKHANDE P G, GHULE N W, BAMER A H, et al. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications[J]. Journal of Drug Delivery Science and Technology, 2019, 53: 101174. doi: 10.1016/j.jddst.2019.101174.
    [71]
    何盈盈, 周文铂, 邰启炜, 等. 纳米材料和纳米药物递释系统在抗细菌感染中的应用及机制[J]. 药学学报, 2023, 58(1): 106-117.
    [72]
    SONDI I, SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria[J]. Journal of Colloid and Interface Science, 2004, 275(1): 177-182. doi: 10.1016/j.jcis.2004.02.012
    [73]
    SANPUI P, MURUGADOSS A, DURGA PRASAD P V, et al. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite[J]. International Journal of Food Microbiology, 2008, 124(2): 142-146. doi: 10.1016/j.ijfoodmicro.2008.03.004
    [74]
    PAL S, TAK Y K, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli[J]. Applied and Environmental Microbiology, 2007, 73(6): 1712-1720. doi: 10.1128/AEM.02218-06
    [75]
    ZHU M, LIU X, TAN L, et al. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing[J]. Journal of Hazardous Materials, 2020, 383: 121122. doi: 10.1016/j.jhazmat.2019.121122.
    [76]
    YANG Y, WU X, HE C, et al. Metal-organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13698-13708.
    [77]
    XIE X, SUN T, XUE J, et al. Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications[J]. Advanced Functional Materials, 2020, 30(17): 2000511. doi: 10.1002/adfm.202000511.
    [78]
    REZVANI E, RAFFERTY A, MCGUINNESS C, et al. Adverse effects of nanosilver on human health and the environment[J]. Acta Biomaterialia, 2019, 94: 145-159. doi: 10.1016/j.actbio.2019.05.042
    [79]
    ZHANG J, WANG F, YALAMARTY S S K, et al. Nano silver-induced toxicity and associated mechanisms[J]. International Journal of Nanomedicine, 2022, 17: 1851-1864. doi: 10.2147/IJN.S355131
    [80]
    ZHANG W, LIU X, BAO S, et al. Evaluation of nano-specific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio[J]. Journal of Nanoparticle Research, 2016, 18(12): 372. doi: 10.1007/s11051-016-3689-2.
    [81]
    DUTTA R K, NENAVATHU B P, GANGISHETTY M K, et al. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 143-150. doi: 10.1016/j.colsurfb.2012.01.046
    [82]
    KUMAR R, UMAR A, KUMAR G, et al. Antimicrobial properties of ZnO nanomaterials: A review[J]. Ceramics International, 2017, 43(5): 3940-3961. doi: 10.1016/j.ceramint.2016.12.062
    [83]
    XIANG Y, ZHOU Q, LI Z, et al. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing[J]. Journal of Materials Science & Technology, 2020, 57: 1-11.
    [84]
    VELSANKAR K, VENKATESAN A, MUTHUMARI P, et al. Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities[J]. Journal of Molecular Structure, 2022, 1255: 132420. doi: 10.1016/j.molstruc.2022.132420.
    [85]
    RUANGTONG J, T-THIENPRASERT J, T-THIENPRASERT N P. Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity[J]. Materials Today Communications, 2020, 24: 101224. doi: 10.1016/j.mtcomm.2020.101224.
    [86]
    SALAMA S A, ESSAM D, TAGYAN A I, et al. Novel composite of nano zinc oxide and nano propolis as antibiotic for antibiotic-resistant bacteria: A promising approach[J]. Scientific Reports, 2024, 14(1): 20894. doi: 10.1038/s41598-024-70490-8.
    [87]
    JABIR M S, RASHID T M, NAYEF U M, et al. Inhibition of Staphylococcus aureus α-hemolysin production using nanocurcumin capped Au@ZnO nanocomposite[J]. Bioinorganic Chemistry and Applications, 2022, 2022: 2663812. doi: 10.1155/2022/2663812.
    [88]
    XAVIER J, COSTA P, HISSA D, et al. Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment[J]. Applied Geochemistry, 2019, 105: 1-6. doi: 10.1016/j.apgeochem.2019.04.012
    [89]
    NANDA M, KUMAR V, SHARMA D. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water[J]. Aquatic Toxicology, 2019, 212: 1-10. doi: 10.1016/j.aquatox.2019.04.011
    [90]
    DWEBA C C, ZISHIRI O T, EL ZOWALATY M E. Methicillin-resistant Staphylococcus aureus: Livestock-associated, antimicrobial, and heavy metal resistance[J]. Infection and Drug Resistance, 2018, 11: 2497-2509. doi: 10.2147/IDR.S175967
    [91]
    LU J, WANG Y, JIN M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169: 115229. doi: 10.1016/j.watres.2019.115229.
    [92]
    DUAN Q Y, ZHU Y X, JIA H R, et al. Nanogels: Synthesis, properties, and recent biomedical applications[J]. Progress in Materials Science, 2023, 139: 101167. doi: 10.1016/j.pmatsci.2023.101167.
    [93]
    KESKIN D, ZU G, FORSON A M, et al. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings[J]. Bioactive Materials, 2021, 6(10): 3634-3657. doi: 10.1016/j.bioactmat.2021.03.004
    [94]
    QI X, HUANG Y, YOU S, et al. Engineering robust Ag-decorated polydopamine nano-photothermal platforms to combat bacterial infection and prompt wound healing[J]. Advanced Science, 2022, 9(11): 2106015. doi: 10.1002/advs.202106015.
    [95]
    HUANG B, LIU X, LI Z, et al. Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds[J]. Chemical Engineering Journal, 2021, 414: 128805. doi: 10.1016/j.cej.2021.128805.
    [96]
    LUO W, MENG K, ZHAO Y, et al. Guar gum modified tilmicosin-loaded sodium alginate/gelatin composite nanogels for effective therapy of porcine proliferative enteritis caused by Lawsonia intracellularis[J]. International Journal of Biological Macromolecules, 2023, 242: 125084. doi: 10.1016/j.ijbiomac.2023.125084.
    [97]
    JIA P, ZOU Y, JIANG J. Antibacterial, antioxidant and injectable hydrogels constructed using CuS and curcumin co-loaded micelles for NIR-enhanced infected wound healing[J]. Journal of Materials Chemistry B, 2023, 11(47): 11319-11334. doi: 10.1039/D3TB02278A
    [98]
    FESSEHA Y A, MANAYIA A H, LIU P C, et al. Photoreactive silver-containing supramolecular polymers that form self-assembled nanogels for efficient antibacterial treatment[J]. Journal of Colloid and Interface Science, 2024, 654: 967-978. doi: 10.1016/j.jcis.2023.10.119
    [99]
    MAO J Y, MISCEVIC D, UNNIKRISHNAN B, et al. Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution[J]. Journal of Colloid and Interface Science, 2022, 608: 1813-1826. doi: 10.1016/j.jcis.2021.10.107
    [100]
    LIN H Y, WANG S W, MAO J Y, et al. Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis[J]. Chemical Engineering Journal, 2021, 411: 128469. doi: 10.1016/j.cej.2021.128469.
    [101]
    FAN Q, YAN X, JIA H, et al. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 ℃[J]. International Journal of Biological Macromolecules, 2024, 257: 128614. doi: 10.1016/j.ijbiomac.2023.128614.
    [102]
    DA SILVA B D, DO ROSÁRIO D K A, NETO L T, et al. Antioxidant, antibacterial and antibiofilm activity of nanoemulsion-based natural compound delivery systems compared with non-nanoemulsified versions[J]. Foods, 2023, 12(9): 1901. doi: 10.3390/foods12091901.
    [103]
    ALZAHRANI N M, BOOQ R Y, ALDOSSARY A M, et al. Liposome-encapsulated tobramycin and IDR-1018 peptide mediated biofilm disruption and enhanced antimicrobial activity against Pseudomonas aeruginosa[J]. Pharmaceutics, 2022, 14(5): 960. doi: 10.3390/pharmaceutics14050960.
    [104]
    PREVETE G, CARVALHO L G, CARMEN RAZOLA-DIAZ M D, et al. Ultrasound assisted extraction and liposome encapsulation of olive leaves and orange peels: How to transform biomass waste into valuable resources with antimicrobial activity[J]. Ultrasonics Sonochemistry, 2024, 102: 106765. doi: 10.1016/j.ultsonch.2024.106765.
    [105]
    SCHUMACHER I, MARGALIT R. Liposome-encapsulated ampicillin: Physicochemical and antibacterial properties[J]. Journal of Pharmaceutical Sciences, 1997, 86(5): 635-641. doi: 10.1021/js9503690
    [106]
    SEVERINO P, SILVEIRA E F, LOUREIRO K, et al. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy[J]. European Journal of Pharmaceutical Sciences, 2017, 106: 177-184. doi: 10.1016/j.ejps.2017.05.063
    [107]
    RADAIC A, MALONE E, KAMARAJAN P, et al. Solid lipid nanoparticles loaded with nisin (SLN-nisin) are more effective than free nisin as antimicrobial, antibiofilm, and anticancer agents[J]. Journal of Biomedical Nanotechnology, 2022, 18(4): 1227-1235. doi: 10.1166/jbn.2022.3314
    [108]
    KHORRAMDEL M, GHADIKOLAII F P, HASHEMY S I, et al. Nanoformulated meloxicam and rifampin: Inhibiting quorum sensing and biofilm formation in Pseudomonas aeruginosa[J]. Nanomedicine, 2024, 19(7): 615-632. doi: 10.2217/nnm-2023-0268
    [109]
    QI Y, CHEN Q, CAI X, et al. Self-assembled amphiphilic chitosan nanomicelles: Synthesis, characterization and antibacterial activity[J]. Biomolecules, 2023, 13(11): 1595. doi: 10.3390/biom13111595.
    [110]
    ZHANG H, YU S, WU S, et al. Rational design of silver NPs-incorporated quaternized chitin nanomicelle with combinational antibacterial capability for infected wound healing[J]. International Journal of Biological Macromolecules, 2023, 224: 1206-1216. doi: 10.1016/j.ijbiomac.2022.10.206
    [111]
    XIE Y, CHEN S, PENG X, et al. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization[J]. Bioactive Materials, 2022, 16: 95-106. doi: 10.1016/j.bioactmat.2022.03.004
    [112]
    LUO T, SHAKYA S, MITTAL P, et al. Co-delivery of superfine nano-silver and solubilized sulfadiazine for enhanced antibacterial functions[J]. International Journal of Pharmaceutics, 2020, 584: 119407. doi: 10.1016/j.ijpharm.2020.119407.
    [113]
    FRANCIS D V, JAYAKUMAR M N, AHMAD H, et al. Antimicrobial activity of biogenic metal oxide nanoparticles and their synergistic effect on clinical pathogens[J]. International Journal of Molecular Sciences, 2023, 24(12): 9998. doi: 10.3390/ijms24129998.
    [114]
    ZHANG S, HAO J, DING F, et al. Nanocatalyst doped bacterial cellulose-based thermosensitive nanogel with biocatalytic function for antibacterial application[J]. International Journal of Biological Macromolecules, 2022, 195: 294-301. doi: 10.1016/j.ijbiomac.2021.12.020
    [115]
    ALAM A, FOUDAH A, SALKINI M, et al. Herbal fennel essential oil nanogel: Formulation, characterization and antibacterial activity against Staphylococcus aureus[J]. Gels, 2022, 8(11): 736. doi: 10.3390/gels8110736.
    [116]
    TAMADDON F, BAGHERI F, AHMADI-AHMADABADI E. Selective preparation of crystalline or fibrous nano-cellulose carboxylate to fabricate an anti-bacterial hydrogel in co-operation with ZnO and recycled gelatin[J]. International Journal of Biological Macromolecules, 2023, 242: 124922. doi: 10.1016/j.ijbiomac.2023.124922.
    [117]
    ARSÈNE M M J, DAVARES A K L, VIKTOROVNA P I, et al. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions[J]. Veterinary World, 2022, 15(3): 662-671.
    [118]
    PATRA J K, DAS G, FRACETO L F, et al. Nano based drug delivery systems: Recent developments and future prospects[J]. Journal of Nanobiotechnology, 2018, 16(1): 71. doi: 10.1186/s12951-018-0392-8.
    [119]
    AHIRE K, GORLE A, MAHARASHTRA I. An overview on methods of preparation and characterization of nanoemulsion[J]. World Journal of Pharmacy and Pharmaceutical Sciences, 2021, 10(8): 897-908.
    [120]
    FAN Y, MARIOLI M, ZHANG K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192: 113642. doi: 10.1016/j.jpba.2020.113642.
    [121]
    BOSE A, ROY BURMAN D, SIKDAR B, et al. Nanomicelles: Types, properties and applications in drug delivery[J]. IET Nanobiotechnology, 2021, 15(1): 19-27. doi: 10.1049/nbt2.12018
    [122]
    RIZVI S A A, SALEH A M. Applications of nanoparticle systems in drug delivery technology[J]. Saudi Pharmaceutical Journal, 2018, 26(1): 64-70. doi: 10.1016/j.jsps.2017.10.012
  • Cited by

    Periodical cited type(4)

    1. 宋鹏,李理想,江厚龙,王茹,李慧,赵鹏宇,张均,秦平伟,任江波,陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响. 浙江农业学报. 2024(03): 494-502 .
    2. 杜蓉惠,何涛,杜鸿燕,邓维萍,朱书生,杜飞. 枯草芽孢杆菌对‘红地球’葡萄白粉病防效及叶际细菌群落的影响. 中外葡萄与葡萄酒. 2024(03): 38-46 .
    3. 李妍,胡斯乐,白晓雄,刘朝斌,张敏,王迎,余旋. 核桃根际耐旱促生菌的分离筛选及其促生作用研究. 西北林学院学报. 2024(03): 84-92 .
    4. 吕嘉妍,毛健辉,霍春宇,黄永芳,罗连荷,梁家俊,陈祖静. 广东省本地油茶和引种油茶根际土壤微生物群落特征. 微生物学通报. 2023(11): 4938-4953 .

    Other cited types(6)

Catalog

    Article views (122) PDF downloads (37) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return