Citation: | XIAO Zhiyu, DU Linsen, LI Kui, et al. Effects of rice-Cherax quadricarinatus integrated farming system on ammonia emission of rice field and nitrogen accumulation in rice[J]. Journal of South China Agricultural University, 2024, 45(6): 908-917. DOI: 10.7671/j.issn.1001-411X.202405003 |
To explore the impact of the rice-red claw crayfish (Cherax quadricarinatus) farming model on ammonia (NH3) volatilization loss in paddy field and nitrogen accumulation in rice plants, and provide a theoretical basis for optimizing input management in paddy field and efficient utilization of resources.
Field experiments were conducted with three treatments including blank control (CK, rice monoculture without fertilizer application and crayfish introduction), conventional rice monoculture (RM), and rice-red claw crayfish farming (RN). The monitoring areas of RN treatment included the rice planting area and ditch area. The variation trend of soil NH3 volatilization and nitrogen use efficiency of rice in different rice ecosystems were determinated.
The ditch area in the RN mode could effectively reduce the NH3 volatilization flux compared to the rice planting area and the RM mode. Under higher nitrogen input conditions, the RN mode did not significantly increase the loss of NH3 volatilization in paddy field, and the loss value showed a decreasing trend. The NH3 volatilization flux in paddy field was significantly positively correlated with the surface water ammonium nitrogen (NH4+-N) and total nitrogen (TN) concentrations (P<0.01). The RN mode increased soil nitrogen content through higher nitrogen input, and the crayfish activity improved soil aeration to promote nitrogen absorption by rice roots, thereby significantly increased nitrogen accumulation (10.2%) in rice total plants at maturity (P<0.05).
Compared to the RM system, the RN system has a higher nitrogen assimilation potential, which can potentially inhibit soil NH3 volatilization, increase nitrogen absorption and accumulation of rice, and achieve higher nitrogen use efficiency.
[1] |
ZHANG M, TIAN Y, ZHAO M, et al. The assessment of nitrate leaching in a rice-wheat rotation system using an improved agronomic practice aimed to increase rice crop yields[J]. Agriculture, Ecosystems & Environment, 2017, 241: 100-109.
|
[2] |
DONG Y, YUAN J, ZHANG G, et al. Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of Southwest China[J]. Pedosphere, 2020, 30(6): 759-768. doi: 10.1016/S1002-0160(20)60036-4
|
[3] |
CHEN Z, WANG Q, MA J, et al. Combing mechanical side-deep fertilization and controlled-release nitrogen fertilizer to increase nitrogen use efficiency by reducing ammonia volatilization in a double rice cropping system[J]. Frontiers in Environmental Science, 2022, 10: 1006606.
|
[4] |
FERDOUS J, MUMU N J, HOSSAIN M B, et al. Co-application of biochar and compost with decreased N fertilizer reduced annual ammonia emissions in wetland rice[J]. Frontiers in Sustainable Food Systems, 2023, 6: 1067112.
|
[5] |
王欢, 郑西来, 辛佳. 土壤氨挥发的影响因素及其与脲酶活性的关系研究[J]. 安徽农学通报, 2016, 22(9): 74-79.
|
[6] |
TIAN G, CAI Z, CAO J, et al. Factors affecting ammonia volatilisation from a rice-wheat rotation system[J]. Chemosphere, 2001, 42(2): 123-129. doi: 10.1016/S0045-6535(00)00117-X
|
[7] |
CAI S, PITTELKOW C M, ZHAO X, et al. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits[J]. Journal of Cleaner Production, 2018, 195: 289-300. doi: 10.1016/j.jclepro.2018.05.115
|
[8] |
LI T, ZHANG Z, CHEN P, et al. The Effect of deep placement of basal nitrogen fertilizer on gaseous nitrogen losses and nitrogen use efficiency of paddy fields under water-saving irrigation in northeast China[J]. Agronomy, 2023, 13(3): 842. doi: 10.3390/agronomy13030842
|
[9] |
JIANG C, LU D, ZU C, et al. One-time root-zone N fertilization increases maize yield, NUE and reduces soil N losses in lime concretion black soil[J]. Scientific Reports, 2018, 8: 10258. doi: 10.1038/s41598-018-28642-0
|
[10] |
SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512-518. doi: 10.1016/j.scitotenv.2018.12.450
|
[11] |
HUSSAIN A, JAHAN N, JABEEN Z, et al. Synergistic effect of urease and nitrification inhibitors in the reduction of ammonia volatilization[J]. Water Air and Soil Pollution, 2021, 232(7): 303.
|
[12] |
NING K, JI L, ZHANG L, et al. Is rice-crayfish co-culture a better aquaculture model: From the perspective of antibiotic resistome profiles[J]. Environmental Pollution, 2022, 292: 118450. doi: 10.1016/j.envpol.2021.118450
|
[13] |
佀国涵, 袁家富, 彭成林, 等. 稻虾共作模式氮和磷循环特征及平衡状况[J]. 中国生态农业学报(中英文), 2019, 27(9): 1309-1318.
|
[14] |
全国水产技术推广总站中国水产学会. 中国稻渔综合种养产业发展报告(2024)全文发布[J]. 中国水产, 2024(8): 12-17.
|
[15] |
BURFORD M A, HIEP L H, VAN SANG N, et al. Does natural feed supply the nutritional needs of shrimp in extensive rice-shrimp ponds? A stable isotope tracer approach[J]. Aquaculture, 2020, 529: 735717. doi: 10.1016/j.aquaculture.2020.735717
|
[16] |
陶先法, 李冰, 喻召雄, 等. 稻虾共生模式对水稻结实期根系分泌物及微生物的影响[J]. 水产学报, 2022, 46(11): 2122-2133.
|
[17] |
张玉山, 梁志辉, 林伟松, 等. 稻虾共作模式下水稻与红螯螯虾种养试验[J]. 水产养殖, 2022, 43(8): 42-44.
|
[18] |
王淳. 双季稻连作体系氮素循环特征 [D]. 北京: 中国农业科学院, 2012.
|
[19] |
LI C F, CAO C G, WANG J P, et al. Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J]. Plant and Soil, 2008, 307(1/2): 207-217.
|
[20] |
YUAN W, CAO C, XING D, et al. Economic valuation associated with nitrogen losses from wetland rice-duck and rice-fish ecological system[J]. Journal of Food, Agriculture & Environment, 2012, 10(3/4): 1271-1278.
|
[21] |
LIU T, LI C, TAN W, et al. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in central China[J]. Agriculture, Ecosystems & Environment, 2022, 330: 107869.
|
[22] |
LI F, FENG J, ZHOU X, et al. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds[J]. Science of the Total Environment, 2019, 655: 284-291. doi: 10.1016/j.scitotenv.2018.10.440
|
[23] |
HAN H, GAO R, CUI Y, et al. A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes[J]. Agricultural Water Management, 2022, 272: 107841. doi: 10.1016/j.agwat.2022.107841
|
[24] |
孔盼, 夏苏敬, 张海维, 等. 耕作方式对早稻−再生稻稻田氨挥发的影响[J]. 生态环境学报, 2021, 30(8): 1627-1633.
|
[25] |
SUN H, ZHANG H, POWLSON D, et al. Rice production, N2O emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine[J]. Field Crops Research, 2015, 173: 1-7. doi: 10.1016/j.fcr.2014.12.012
|
[26] |
LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80-90. doi: 10.1016/j.fcr.2015.09.011
|
[27] |
YANG Y, LI N, NI X, et al. Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields[J]. Journal of Cleaner Production, 2020, 244: 118745. doi: 10.1016/j.jclepro.2019.118745
|
[28] |
XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381-E1387.
|
[29] |
冯珺珩. 稻虾共作模式厌氧氨氧化的空间分布特征及其微生物调控机制 [D]. 武汉: 华中农业大学, 2022.
|
[30] |
WANG C, SUN H F, ZHANG J N, et al. Effects of different fertilization methods on ammonia volatilization from rice paddies[J]. Journal of Cleaner Production, 2021, 295: 126299.
|
[31] |
LIU T, HUANG J, CHAI K, et al. Effects of N fertilizer sources and tillage practices on NH3 volatilization, grain yield, and N use efficiency of rice fields in central China[J]. Frontiers in Plant Science, 2018, 9: 385. doi: 10.3389/fpls.2018.00385
|
[32] |
周平遥, 张震, 王华, 等. 不同深施肥方式对稻田氨挥发及水稻产量的影响[J]. 农业环境科学学报, 2020, 39(11): 2683-2691.
|
[33] |
HUANG S, LV W, BLOSZIES S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis[J]. Field Crops Research, 2016, 192: 118-125. doi: 10.1016/j.fcr.2016.04.023
|
[34] |
ZHAO X, YAN X, XIE Y, et al. Use of nitrogen isotope to determine fertilizer- and soil-derived ammonia volatilization in a rice/wheat rotation system[J]. Journal of Agricultural and Food Chemistry, 2016, 64(15): 3017-3024. doi: 10.1021/acs.jafc.5b05898
|
[35] |
SUN Z, GUO Y, LI C, et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China[J]. Environmental Science and Pollution Research, 2019, 26(12): 11710-11718.
|
[36] |
李晓龙, 方明, 殷全玉, 等. 烟稻轮作系统下烟田土壤NH3挥发特征及影响因素分析[J]. 山东农业科学, 2022, 54(4): 95-101.
|
[37] |
ZHANG J S, ZHANG F P, YANG J H, et al. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 164-173.
|
[38] |
GUO L, ZHAO L, YE J, et al. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems[J]. eLife, 2022, 11: 73869. doi: 10.7554/eLife.73869
|
[39] |
OEHME M, FREI M, RAZZAK M A, et al. Studies on nitrogen cycling under different nitrogen inputs in integrated rice-fish culture in Bangladesh[J]. Nutrient Cycling in Agroecosystems, 2007, 79(2): 181-191. doi: 10.1007/s10705-007-9106-6
|
[40] |
车阳, 程爽, 田晋钰, 等. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953-1965.
|
[41] |
梁玉刚, 李静怡, 王丹, 等. 垄作稻鱼鸡共生对水稻群体生长特性及产量形成的影响[J]. 中国农业科技导报, 2020, 22(11): 165-175.
|
[42] |
WANG Q, YU K, ZHANG H. Controlled-release fertilizer improves rice matter accumulation characteristics and yield in rice-crayfish coculture[J]. Agriculture, 2022, 12(10): 1674. doi: 10.3390/agriculture12101674
|
[43] |
何俊, 张宪中, 蒋造极, 等. 水稻−红螯螯虾共作模式与红螯螯虾传统池塘养殖模式对比试验[J]. 水产养殖, 2019, 40(7): 27-30.
|
[44] |
XU C, CHEN L, CHEN S, et al. Rhizosphere aeration improves nitrogen transformation in soil, and nitrogen absorption and accumulation in rice plants[J]. Rice Science, 2020, 27(2): 162-174. doi: 10.1016/j.rsci.2020.01.007
|
[45] |
任万军, 杨文钰, 伍菊仙, 等. 水稻栽后植株氮素积累特征及其与根系生长的关系[J]. 植物营养与肥料学报, 2007, 13(5): 765-771.
|
[46] |
戴华军, 韩雪梅, 许俊伟, 等. 有机无机复混肥稻田适宜施用量及养分利用效率研究[J]. 上海农业科技, 2022(5): 103-107.
|
[47] |
刘小燕. 稻鸭鱼生态种养对稻田甲烷减排及水稻栽培环境改善的功能研究[D]. 长沙: 湖南农业大学, 2004.
|
[48] |
蔡晨, 李谷, 朱建强, 等. 稻虾轮作模式下江汉平原土壤理化性状特征研究[J]. 土壤学报, 2019, 56(1): 217-226.
|
[49] |
厉宝仙, 王保君, 怀燕, 等. 水稻−红螯螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696.
|
1. |
蒋沅均,刘红光,余立扬,廖新炜,余劼,陈宇佳,刘畅,秦文祥,郑炜超. 蛋鸡养殖智能巡检机器人设计概述与应用. 中国家禽. 2025(02): 89-97 .
![]() | |
2. |
熊竹青,陈怡然,刘莹,孙雷,刘玉龙,闫银发,田野,冯泽猛,印遇龙. 畜禽养殖场舍电磁环境研究进展. 家畜生态学报. 2025(01): 98-107 .
![]() | |
3. |
王晨晓,耿丹丹,毕瑜林,陈国宏,常国斌,白皓. 肠道微生物及其代谢产物对家禽饲料利用率影响的研究进展. 中国家禽. 2025(05): 152-160 .
![]() | |
4. |
徐君鹏,时磊,王宇,杨文强,杨秋亚. 基于PLC的生猪养殖智能化环境监控及云平台系统设计. 河南科技学院学报(自然科学版). 2025(03): 44-53 .
![]() | |
5. |
王祎娜,王鹏军,陈聪. 肉鸡福利养殖的发展现状与趋势. 智能化农业装备学报(中英文). 2025(02): 105-110 .
![]() | |
6. |
韩雨晓,李帅,王宁,安娅军,张漫,李寒. 基于3D激光雷达的鸡舍通道中心线检测方法. 农业工程学报. 2024(09): 173-181 .
![]() | |
7. |
邵润霖,白宇航,刘睿衡,张京,董梦玥,肖德琴,谢青梅,张新珩. 家禽疫病智能化检测技术研究进展. 中国家禽. 2024(07): 93-100 .
![]() | |
8. |
肖德琴,黄一桂,熊悦淞,刘俊彬,谭祖杰,吕斯婷. 畜禽机器人技术研究进展与未来展望. 华南农业大学学报. 2024(05): 624-634+620 .
![]() | |
9. |
刘晓燕. 亚氨基二乙酸型螯合树脂柱-电感耦合等离子体质谱法测定家禽养殖废水中7种金属元素的残留量. 理化检验-化学分册. 2024(07): 744-748 .
![]() | |
10. |
余志安,肖瑞全,李秋生,汤晋,陈恒,谢宁,刘小春. 江西省家禽产业数字化现实基础、制约因素及推进路径. 中国禽业导刊. 2024(08): 19-25 .
![]() | |
11. |
孙杰,马凯欣,王佳乐,胡应宽. 禽舍智慧管家——基于数字农业的家禽养殖应用. 当代畜牧. 2024(06): 1-3 .
![]() | |
12. |
宁小芬,陆美连,莫梅清,方燕,李梦玲,刘皓,王开胜. 我国智慧养殖关键技术、平台及其应用的研究进展. 玉林师范学院学报. 2024(03): 95-100 .
![]() | |
13. |
肖德琴,曾瑞麟,周敏,黄一桂,王文策. 基于DH-YoloX的群养马岗鹅关键行为监测. 农业工程学报. 2023(02): 142-149 .
![]() | |
14. |
冷婷婷. 家禽养殖设备专利分析. 现代畜牧科技. 2023(07): 132-135 .
![]() | |
15. |
胡建平,赵新宇,冯汝广,范国华,赵翠敏. 传感器在设施农业中的应用. 南方农机. 2023(19): 59-61+91 .
![]() | |
16. |
杨雨彤,句金,任守华. 基于深度卷积神经网络的蛋鸡体温监测系统. 现代畜牧科技. 2023(10): 51-55 .
![]() | |
17. |
冉明霞,郑基坛,刘兴廷,谢龙,左二伟,陆阳清. 家禽基因编辑相关技术研究进展及应用. 中国畜禽种业. 2023(12): 36-48 .
![]() |