Citation: | XIAO Deqin, HUANG Yigui, XIONG Yuesong, et al. Research progress on robotic technology in the field of livestock and poultry farming[J]. Journal of South China Agricultural University, 2024, 45(5): 624-634. DOI: 10.7671/j.issn.1001-411X.202404055 |
As the modern livestock and poultry farming industry faces increasing challenges, including improving production efficiency, reducing costs, ensuring animal welfare, and responding to environmental changes, the application of robotic technology has become the key to driving the transformation of this industry. This article reviewed the research progress of robotic technology in the field of livestock and poultry farming, including the current status and technical characteristics of research on feeding robots, cleaning robots, inspection robots, milking robots, and other related areas. The robotic technology played an important role in enhancing the automation and intelligence level of the livestock and poultry farming industry. Among them, the feeding robots improved the feeding efficiency and the health level of farmed animals through precise control of feed delivery, the cleaning robots could effectively manage the farming environment and enhance the hygiene conditions of farms, the inspection robots optimized farming management through real-time monitoring of the environment and animal health condition, the milking robots achieved automation in dairy farming and improved the production efficiency. The challenge and opportunity of robotic technology in livestock and poultry farming were discussed, and the future development trend and prospect were proposed.
[1] |
HUANG Y, XIAO D, LIU J, et al. Analysis of pig activity level and body temperature variation based on ear tag data[J]. Computers and Electronics in Agriculture, 2024, 219: 108768. doi: 10.1016/j.compag.2024.108768
|
[2] |
肖荣浩, 马旭, 李宏伟, 等. 基于UWB定位的农业机械辅助导航系统设计与试验[J]. 华南农业大学学报, 2022, 43(3): 116-123. doi: 10.7671/j.issn.1001-411X.202107049
|
[3] |
吕恩利, 何欣源, 罗毅智, 等. 哺乳母猪智能饲喂物联网系统设计[J]. 华南农业大学学报, 2023, 44(1): 57-64.
|
[4] |
朱军, 麻硕士, 慕厚春, 等. 种猪自动精细饲喂系统设计与试验[J]. 农业机械学报, 2010, 41(12): 174-177. doi: 10.3969/j.issn.1000-1298.2010.12.036
|
[5] |
王泽程. 睿保乐: 与科技创新一同见证猪场的未来: 访睿保乐(上海)贸易有限公司[J]. 猪业科学, 2018, 35(11): 56-59.
|
[6] |
胡圣杰, 王树才. RFID技术在养猪业中的应用[J]. 湖北农机化, 2007(5): 24-25.
|
[7] |
郭伟豪, 李海军, 郝文博, 等. 羊只饲喂机器人控制系统设计与出料试验[J]. 黑龙江畜牧兽医, 2024(5): 55-60.
|
[8] |
倪志江, 高振江, 蒙贺伟, 等. 智能化个体奶牛精确饲喂机设计与实验[J]. 农业机械学报, 2009, 40(12): 205-209.
|
[9] |
赵清来, 邹正东, 李文彪, 等. 智能化双侧奶牛个体精量饲喂装置的设计与试验[J]. 吉林农业大学学报, 2019, 41(1): 115-119.
|
[10] |
杨存志, 李源源, 杨旭, 等. FR-200型奶牛智能化精确饲喂机器人的研制[J]. 农机化研究, 2014, 36(2): 120-122. doi: 10.3969/j.issn.1003-188X.2014.02.030
|
[11] |
耿丽微, 钱东平, 赵春辉. 基于射频技术的奶牛身份识别系统[J]. 农业工程学报, 2009, 25(5): 137-141. doi: 10.3969/j.issn.1002-6819.2009.05.26
|
[12] |
谢艳, 张子龙, 龚荣虎, 等. 基于TRIZ理论的奶牛饲喂机器人创新设计[J]. 机械设计与研究, 2021, 37(5): 31-34.
|
[13] |
孙芊芊, 李海军, 宣传忠, 等. 基于羊只应激反应的智能饲喂机器人功能与造型研究[J]. 内蒙古农业大学学报(自然科学版), 2019, 40(5): 60-64.
|
[14] |
贺刚, 翟改霞, 祝天宇, 等. 犊牛饲喂信息系统设计与给奶量预测研究[J]. 农业机械学报, 2022, 53(S2): 241-248.
|
[15] |
朱立学, 官金炫, 张世昂, 等. 基于深度学习的肉鸽精准饲喂机器人的研制与试验[J]. 机电产品开发与创新, 2022, 35(5): 6-10.
|
[16] |
张帆, 李海军, 雷禾雨, 等. 羊只饲喂机器人行走控制系统的设计[J]. 农业装备技术, 2020, 46(1): 35-39. doi: 10.3969/j.issn.1671-6337.2020.01.014
|
[17] |
杨亮, 王辉, 陈睿鹏, 等. 智能养猪工厂的研究进展与展望[J]. 华南农业大学学报, 2023, 44(1): 13-23. doi: 10.7671/j.issn.1001-411X.202209050
|
[18] |
VINYARD O. Rear-mounted manure gathering machine and method of handling manure: 5297745 [P]. 1994-03-29.
|
[19] |
李许杰, 闫锋欣, 胡凯, 等. 肉鸡平养鸡舍自走式粪污清收装袋一体机研制[J]. 农业工程学报, 2024, 40(3): 251-261.
|
[20] |
CUBERO S N, BADI M, ALI M A, et al. A High-speed camel dung collection machine[J]. Mechatronics and Machine Vision in Practice, 2021(4): 87-103.
|
[21] |
刘磊. 猪舍清洁机器人设计及路径规划研究[J]. 价值工程, 2022, 41(1): 137-139.
|
[22] |
李保明, 王阳, 郑炜超, 等. 畜禽养殖智能装备与信息化技术研究进展[J]. 华南农业大学学报, 2021, 42(6): 18-26.
|
[23] |
罗土玉, 高彦玉, 周昆乐, 等. 猪舍清粪机器人控制系统的设计与试验[J]. 黑龙江畜牧兽医(下半月), 2022(12): 30-34.
|
[24] |
王士涛, 刘林保, 谈仁斌. 一种高压吹气清洁机器人: CN220361723U[P]. 2024-01-19.
|
[25] |
尧李慧, 蔡晓华, 田雷, 等. 牛舍清洁机器人结构设计与避障设计[J]. 农机化研究, 2018, 40(2): 70-74.
|
[26] |
杨存志, 贺刚, 尧李慧, 等. 全自走牛舍清洁机器人的设计[J]. 农机化研究, 2017, 39(5): 90-94. doi: 10.3969/j.issn.1003-188X.2017.05.016
|
[27] |
侯云涛, 尧李慧, 蔡晓华, 等. 自动清粪机器人路径规划方法的研究与实现[J]. 农机化研究, 2017, 39(6): 23-26. doi: 10.3969/j.issn.1003-188X.2017.06.005
|
[28] |
胡振楠, 孙红敏, 李晓明, 等. 基于加速度传感器的猪舍刮粪板运行状态监测装置设计与仿真[J]. 农业与技术, 2019, 39(17): 18-22.
|
[29] |
QI F, ZHAO X, SHI Z, et al. Environmental factor detection and analysis technologies in livestock and poultry houses: A review[J]. Agriculture, 2023, 13(8): 1489. doi: 10.3390/agriculture13081489
|
[30] |
赵文文, 王海峰, 朱君, 等. 猪舍消杀巡检机器人系统设计与试验[J]. 农业机械学报, 2022, 53(S2): 270-277. doi: 10.6041/j.issn.1000-1298.2022.S2.031
|
[31] |
刁亚萍. 基于WSN的集约化猪舍多环境因子监测及CFD模拟的研究[D]. 武汉: 华中农业大学, 2018.
|
[32] |
龙长江, 谭鹤群, 朱明, 等. 畜禽舍移动式智能监测平台研制[J]. 农业工程学报, 2021, 37(7): 68-75. doi: 10.11975/j.issn.1002-6819.2021.07.009
|
[33] |
CHANG C, XIE B, WANG C. Visual guidance and egg collection scheme for a smart poultry robot for free-range farms[J]. Sensors, 2020, 20(22): 6624. doi: 10.3390/s20226624
|
[34] |
赵春江, 梁雪文, 于合龙, 等. 基于改进YOLO v7的笼养鸡/蛋自动识别与计数方法[J]. 农业机械学报, 2023, 54(7): 300-312.
|
[35] |
GEFFEN O, YITZHAKY Y, BARCHILON N, et al. A machine vision system to detect and count laying hens in battery cages[J]. Animal, 2020, 14(12): 2628-2634. doi: 10.1017/S1751731120001676
|
[36] |
JIANG K, XIE T, YAN R, et al. An attention mechanism-improved YOLO v7 object detection algorithm for hemp duck count estimation[J]. Agriculture, 2022, 12(10): 1659. doi: 10.3390/agriculture12101659
|
[37] |
连京华, 李惠敏, 祝伟, 等. 家禽生产智能巡检机器人的设计[J]. 中国家禽, 2019(18): 72-75.
|
[38] |
白云港, 祝忠钲, 侯英勇, 等. 养鸡场巡检机器人无线充电模块设计与试验[J]. 智能化农业装备学报(中英文), 2022, 3(2): 45-52.
|
[39] |
肖德琴, 刘勤, 陈丽, 等. 设施猪场生猪体温红外巡检系统设计与试验[J]. 农业机械学报, 2019, 50(7): 194-200. doi: 10.6041/j.issn.1000-1298.2019.07.020
|
[40] |
肖德琴, 林思聪, 刘勤, 等. 基于红外热成像的生猪耳温自动提取算法[J]. 农业机械学报, 2021, 52(8): 255-262. doi: 10.6041/j.issn.1000-1298.2021.08.026
|
[41] |
杨柳, 陈肯, 罗金生, 等. 基于物联网的山猪体温测量系统设计[J]. 信息系统工程, 2021(8): 86-88. doi: 10.3969/j.issn.1001-2362.2021.08.030
|
[42] |
岳学军, 蔡雨霖, 王林惠, 等. 农情信息智能感知及解析的研究进展[J]. 华南农业大学学报, 2020, 41(6): 14-28. doi: 10.7671/j.issn.1001-411X.202008044
|
[43] |
兰玉彬, 王天伟, 陈盛德, 等. 农业人工智能技术: 现代农业科技的翅膀[J]. 华南农业大学学报, 2020, 41(6): 1-13.
|
[44] |
SPENCER S. Robotic milkmaids to become a commercial reality[J]. Industrial Robot: An International Journal, 1999, 26(2): 112-114. doi: 10.1108/01439919910260240
|
[45] |
SHARIPOV D R, YAKIMOV O A, GAINULLINA M K, et al. Development of automatic milking systems and their classification[J]. IOP Conference Series: Earth and Environmental Science, 2021, 659(1): 12080. doi: 10.1088/1755-1315/659/1/012080
|
[46] |
JOHN A J, CLARK C E, FREEMAN M J, et al. Review: Milking robot utilization, a successful precision livestock farming evolution[J]. Animal, 2016, 10(9): 1484-1492. doi: 10.1017/S1751731116000495
|
[47] |
马为红, 薛向龙, 李奇峰, 等. 智能养殖机器人技术与应用进展[J]. 中国农业信息, 2021, 33(3): 24-34. doi: 10.12105/j.issn.1672-0423.20210303
|
[48] |
刘俊杰, 杨存志, 杨旭, 等. 智能挤奶机器人总体设计方案研究[J]. 农业科技与装备, 2015(12): 16-19. doi: 10.3969/j.issn.1674-1161.2015.12.007
|
[49] |
杨存志, 吴泽全, 郭洋. 挤奶机器人的结构设计[J]. 农机化研究, 2018, 40(4): 98-103. doi: 10.3969/j.issn.1003-188X.2018.04.019
|
[50] |
王成军, 李少强. 基于TRIZ理论的转盘式挤奶机器人结构设计[J]. 科学技术与工程, 2022, 22(7): 2770-2775. doi: 10.3969/j.issn.1671-1815.2022.07.029
|
[51] |
李硕, 王成军. 基于TRIZ理论的挤奶机器人设计[J]. 安徽科技, 2023(3): 34-36.
|
[52] |
郭洋, 吴泽全, 蔡晓华, 等. 挤奶机器人机械臂控制方法研究[J]. 农业科技与装备, 2017(4): 18-20.
|
[53] |
TREVELYAN J P. Sensing and control for sheep shearing robots[J]. IEEE Transactions on Robotics and Automation, 1989, 5(6): 716-727. doi: 10.1109/70.88094
|
[54] |
张唯诚. 初显身手的五款农业机器人[J]. 百科知识, 2019(16): 24-25. doi: 10.3969/j.issn.1002-9567.2019.16.012
|
[55] |
刘景喜, 彭传文, 王丽学. 牛群导航系统在荷兰奶牛场的应用考察[J]. 天津农业科学, 2015, 21(11): 34-36. doi: 10.3969/j.issn.1006-6500.2015.11.009
|
[56] |
VROEGINDEWEIJ B A, IJSSELMUIDEN J, VAN HENTEN E J. Probabilistic localisation in repetitive environments: Estimating a robot’s position in an aviary poultry house[J]. Computers and Electronics in Agriculture, 2016, 124: 303-317. doi: 10.1016/j.compag.2016.04.019
|
[57] |
王树才, 任奕林, 文友先. 禽蛋检测与分级智能机器人系统的软件实现[J]. 华中农业大学学报, 2008, 27(2): 335-339. doi: 10.3321/j.issn:1000-2421.2008.02.036
|
[58] |
王树才, 文友先, 苏工兵. 禽蛋检测与分级智能机器人系统的设计[J]. 机械工程学报, 2008, 44(2): 182-188. doi: 10.3321/j.issn:0577-6686.2008.02.031
|
[59] |
张世庆, 涂佳, 孙力, 等. 鸡蛋质量与长短轴在线检测方法[J]. 农业机械学报, 2014, 45(2): 204-209. doi: 10.6041/j.issn.1000-1298.2014.02.034
|
[60] |
郭建军, 杨霖, 张恩威, 等. 基于机器视觉的裂纹鸡蛋分拣系统设计[J]. 现代农业装备, 2024, 45(1): 45-52.
|
[61] |
徐彦伟, 徐爱军, 颉潭成, 等. 基于多信息融合的疫苗制备中鸡蛋胚体分拣系统[J]. 农业机械学报, 2015, 46(2): 20-26. doi: 10.6041/j.issn.1000-1298.2015.02.004
|
[62] |
赵祚喜, 魏洪飞, 黄渊, 等. 基于改进YOLOv7的破壳鸡蛋在线实时检测系统[J]. 农业工程学报, 2023, 39(20): 255-265. doi: 10.11975/j.issn.1002-6819.202305228
|
[63] |
肖德琴, 王佳涛, 毛远洋, 等. 一种笼养种蛋鸭个体产蛋性能巡检测定装置、方法和系统: CN116530438A[P]. 2023-08-04.
|
[64] |
肖德琴, 陈芳玲, 刘又夫, 等. 基于改进ConvNeXt模型的黄羽鸡表皮层黑色素智能分级方法[J]. 农业工程学报, 2024, 40(3): 165-174.
|
[65] |
杨秋妹, 陈淼彬, 黄一桂, 等. 基于改进YOLO v5n的猪只盘点算法[J]. 农业机械学报, 2023, 54(1): 251-262. doi: 10.6041/j.issn.1000-1298.2023.01.025
|
[66] |
殷建军, 康俊琪, 肖德琴. 基于改进YOLO v5l的轻量化鸭蛋裂纹检测算法[J]. 农业工程学报, 2024, 40(5): 216-223.
|
[67] |
赵静娟, 郑怀国, 董瑜, 等. 全球农业机器人研发趋势预测及对我国的启示[J]. 中国农机化学报, 2021, 42(4): 157-162.
|
[68] |
肖德琴, 毛远洋, 刘又夫, 等. 我国家禽工厂化养殖技术发展现状与趋势[J]. 华南农业大学学报, 2023, 44(1): 1-12.
|
[69] |
BIN Z, DEQIN X, JUNBIN L, et al. Pig eye area temperature extraction algorithm based on registered images[J]. Computers and Electronics in Agriculture, 2024, 217: 108549. doi: 10.1016/j.compag.2023.108549
|
[70] |
肖德琴, 曾瑞麟, 周敏, 等. 基于DH-YoloX的群养马岗鹅关键行为监测[J]. 农业工程学报, 2023, 39(2): 142-149. doi: 10.11975/j.issn.1002-6819.202210079
|
[71] |
肖德琴, 刘俊彬, 刘又夫, 等. 常态养殖下妊娠母猪体质量智能测定模型[J]. 农业工程学报, 2022, 38(S1): 161-169. doi: 10.11975/j.issn.1002-6819.2022.z.018
|
[72] |
YIGUI H, DEQIN X, JUNBIN L, et al. An improved pig counting algorithm based on YOLO v5 and DeepSORT model.[J]. Sensors, 2023, 23(14): 6309. doi: 10.3390/s23146309
|
[73] |
刘成良, 贡亮, 苑进, 等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报, 2022, 53(7): 1-22. doi: 10.6041/j.issn.1000-1298.2022.07.001
|
[74] |
唐瑜嵘, 沈明霞, 薛鸿翔, 等. 人工智能技术在畜禽养殖业的发展现状与展望[J]. 智能化农业装备学报(中英文), 2023, 4(1): 1-16.
|
[75] |
卞智逸, 肖德琴, 殷建军, 等. 基于PLC技术的火龙果智能补光调控器设计与应用[J]. 华南农业大学学报, 2022, 43(5): 124-132. doi: 10.7671/j.issn.1001-411X.202112041
|
[1] | XU Ying, QIU Yangyang, SHEN Yue, FENG Huixin, FENG Yunyun, HUANG Xianhui. Preparation of enrofloxacin nanoemulsion and evaluation of pharmacodynamic of spray administration[J]. Journal of South China Agricultural University, 2021, 42(1): 42-48. DOI: 10.7671/j.issn.1001-411X.202001030 |
[2] | CEN Zhenzhao, YUE Xuejun, WANG Linhui, LING Kangjie, CHENG Ziyao, LU Yang. Design and test of self-adaptive variable spray system of UAV based on neural network PID[J]. Journal of South China Agricultural University, 2019, 40(4): 100-108. DOI: 10.7671/j.issn.1001-411X.201811017 |
[3] | CHEN Shengde, LAN Yubin, ZHOU Zhiyan, LIAO Juan, ZHU Qiuyang. Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy[J]. Journal of South China Agricultural University, 2017, 38(5): 97-102. DOI: 10.7671/j.issn.1001-411X.2017.05.017 |
[4] | WANG Linhui, GAN Haiming, YUE Xuejun, LAN Yubin, WANG Jian, LIU Yongxin, LING Kangjie, CEN Zhenzhao. Design of a precision spraying control system with unmanned aerial vehicle based on image recognition[J]. Journal of South China Agricultural University, 2016, 37(6): 23-30. DOI: 10.7671/j.issn.1001-411X.2016.06.004 |
[5] | LAN Yubin, PENG Jin, JIN Ji. Research status and development of pesticide spraying droplet size[J]. Journal of South China Agricultural University, 2016, 37(6): 1-9. DOI: 10.7671/j.issn.1001-411X.2016.06.001 |
[6] | YUE Xue-jun,CHEN Shan,LU Yong-chao,LI Zhen,WANG Wan-zhang. Experiment of Shield Effects on Spray Breadth[J]. Journal of South China Agricultural University, 2008, 29(3). DOI: 10.7671/j.issn.1001-411X.2008.03.022 |
[7] | C. SINFORT,B. TISSEYRE,SONG Shu-ran,HONG Tian-sheng,WANG Wei-xing,ZHAO Xin,C. SINFORT,B. TISSEYRE. The Deposit Distribution of Spraying Droplet Based on DGPS in Rice Fields[J]. Journal of South China Agricultural University, 2006, 27(3): 97-99. DOI: 10.7671/j.issn.1001-411X.2006.03.027 |
[8] | LI Jian-guo,HUANG Xu-ming,HUANG Hui-bai. NAA sprays increased litchi fruit size and its roles[J]. Journal of South China Agricultural University, 2004, 25(2): 10-12. DOI: 10.7671/j.issn.1001-411X.2004.02.003 |
[9] | Cen Yijing, Tian Mingyi. Advances in the Use of Petroleum Spray Oils in Control of Pests in Citrus[J]. Journal of South China Agricultural University, 1999, (2): 118-122. |
[10] | Zeng Xinnian, zhao Shanhuan. INVSTIGATIONS ON TIMING SPRAY INSECTECICIDE AGAINST CITRUS LEAFMINER(Phyllocnistis citrella Stainton)[J]. Journal of South China Agricultural University, 1995, (1): 44-49. |