Citation: | DUAN Lingtao, HE Jiuqing, WANG Li, et al. Study on the functions of the autophagy related gene ChAtg3 in Colletotrichum higginsianum[J]. Journal of South China Agricultural University, 2025, 46(2): 175-185. DOI: 10.7671/j.issn.1001-411X.202404046 |
To study the role of ChAtg3, an autophagy-related gene in Colletotrichum higginsianum.
The sequence, phylogeny and expression pattern of ChAtg3 were analyzed, and the expression changes of ChAtg3 were observed in Arabidopsis thaliana after infection with C. higginsianum. An Agrobacterium tumefaciens-mediated genetic transformation system was employed to perform specific gene knockouts and their subsequent complementation.
The expression changes of ChAtg3 were observed after C. higginsianum infected A. thaliana for 8 to 40 h. The mutant ΔChAtg3, created through targeted ChAtg3 gene knockout, exhibited impaired autophagy, with markedly reduced melanin production, conidiation, appressorium formation, and pathogenic potential, although mycelial growth and conidial germination rate had no significant changes compared with wild type. Gene complementation in the CΔChAtg3 strain effectively reinstated its biological phenotype and pathogenicity.
The results reveal that ChAtg3 plays a key role in autophagy, conidiation, and appressorium formation of C. higginsianum, confirming it as a critical determinant of pathogenic capacity of C. higginsianum.
[1] |
祝一鸣. 希金斯炭疽菌自噬蛋白ChAtg8及互作蛋白Ch174 的功能分析[D]. 广州: 华南农业大学, 2023.
|
[2] |
DAMM U, O’CONNELL R J, GROENEWALD J Z, et al. The Colletotrichum destructivum species complex-hemibiotrophic pathogens of forage and field crops[J]. Studies in Mycology, 2014, 79(1): 49-84. doi: 10.1016/j.simyco.2014.09.003
|
[3] |
张华, 刘自珠, 郑岩松, 等. 菜心品种资源炭疽病抗性鉴定[J]. 广东农业科学, 2000, 27(3): 47-49. doi: 10.3969/j.issn.1004-874X.2000.03.021
|
[4] |
卢博彬, 杨暹. 菜心炭疽病研究进展[J]. 长江蔬菜, 2009(24): 1-5. doi: 10.3865/j.issn.1001-3547.2009.24.001
|
[5] |
王强, 陈沁滨, 熊元忠. 十字花科蔬菜繁种产量的制约因素及对策[J]. 长江蔬菜, 2009(22): 75-77.
|
[6] |
周而勋, 杨媚, 张华, 等. 菜心炭疽病菌菌丝生长、产孢和孢子萌发的影响因素[J]. 南京农业大学学报, 2002, 25(2): 47-51.
|
[7] |
JUAREZ-MONTIEL M, CLARK-FLORES D, TESILLO-MORENO P, et al. Vacuolar proteases and autophagy in phytopathogenic fungi: A review[J]. Frontiers in Fungal Biology, 2022, 3: 948477. doi: 10.3389/ffunb.2022.948477.
|
[8] |
GANLEY I. The importance of being autophagic[J]. New England Journal of Medicine, 2021, 384(25): 2449-2450. doi: 10.1056/NEJMe2107506
|
[9] |
FUKUDA T, KANKI T. Atg43, a novel autophagy-related protein, serves as a mitophagy receptor to bridge mitochondria with phagophores in fission yeast[J]. Autophagy, 2021, 17(3): 826-827. doi: 10.1080/15548627.2021.1874662
|
[10] |
KUZNETSOV S A, GELFAND V I. 18 kDa microtubule-associated protein: Identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1)[J]. FEBS Letters, 1987, 212(1): 145-148. doi: 10.1016/0014-5793(87)81574-0
|
[11] |
SHIRAISHI K, SAKAI Y. Autophagy as a survival strategy for eukaryotic microbes living in the phyllosphere[J]. Frontiers in Plant Science, 2022, 13: 867486. doi: 10.3389/fpls.2022.867486
|
[12] |
LIU X H, ZHAO Y H, ZHU X M, et al. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae[J]. Scientific Reports, 2017, 7: 40018. doi: 10.1038/srep40018.
|
[13] |
LIU T B, LIU X H, LU J P, et al. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae[J]. Autophagy, 2010, 6(1): 74-85. doi: 10.4161/auto.6.1.10438
|
[14] |
LI F Q, VIERSTRA R D. Autophagy: A multifaceted intracellular system for bulk and selective recycling[J]. Trends in Plant Science, 2012, 17(9): 526-537. doi: 10.1016/j.tplants.2012.05.006
|
[15] |
LIU S Z, YAO S J, YANG H, et al. Autophagy: Regulator of cell death[J]. Cell Death & Disease, 2023, 14: 648. doi: 10.1038/s41419-023-06154-8.
|
[16] |
LV W Y, WANG C Y, YANG N, et al. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum[J]. Scientific Reports, 2017, 7(1): 11062. doi: 10.1038/s41598-017-11640-z.
|
[17] |
董在芳, 丁腾腾, 单艺轩, 等. 自噬相关基因FpAtg3参与假禾谷镰孢的生长和致病[J]. 中国农业科学, 2024, 57(6): 1080-1090. doi: 10.3864/j.issn.0578-1752.2024.06.005
|
[18] |
杨滢滢. MaMYB4参与低温影响采后香蕉果实成熟的表观遗传机制分析[D]. 广州: 华南农业大学, 2020.
|
[19] |
ZHU X M, LI L, WU M, et al. Current opinions on autophagy in pathogenicity of fungi[J]. Virulence, 2019, 10(1): 481-489. doi: 10.1080/21505594.2018.1551011
|
[20] |
DERETIC V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453. doi: 10.1016/j.immuni.2021.01.018
|
[21] |
WANG P, SUN X, JIA X, et al. Apple autophagy-related protein MdATG3s afford tolerance to multiple abiotic stresses[J]. Plant Science, 2017, 256: 53-64. doi: 10.1016/j.plantsci.2016.12.003
|
[22] |
KHALID A R, LV X, NAEEM M, et al. Autophagy related gene (ATG3) is a key regulator for cell growth, development, and virulence of Fusarium oxysporum[J]. Genes (Basel), 2019, 10(9): 658. doi: 10.3390/genes10090658
|
[23] |
YIN Z Y, CHEN C, YANG J, et al. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in Magnaporthe oryzae[J]. Autophagy, 2019, 15(7): 1234-1257. doi: 10.1080/15548627.2019.1580104
|
[24] |
WANG T, REN D, GUO H, et al. CgSCD1 is essential for melanin biosynthesis and pathogenicity of Colletotrichum gloeosporioides[J]. Pathogens, 2020, 9(2): 141. doi: 10.3390/pathogens9020141
|
[25] |
ZHU S Y, YAN Y X, QU Y M, et al. Role refinement of melanin synthesis genes by gene knockout reveals their functional diversity in Pyricularia oryzae strains[J]. Microbiological Research, 2021, 242: 126620. doi: 10.1016/j.micres.2020.126620.
|
[26] |
RAMKUMAR A, MURTHY D, RAJA D A, et al. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks[J]. Autophagy, 2017, 13(8): 1331-1347. doi: 10.1080/15548627.2017.1327509
|