Citation: | ZHAO Haiwen, ZHOU Changpin, LIU Yizhen, et al. Early growth model fitting and growth rhythm of Eucalyptus pellita[J]. Journal of South China Agricultural University, 2025, 46(2): 212-221. DOI: 10.7671/j.issn.1001-411X.202404039 |
To investigate growth rhythm using nine Eucalyptus pellita provenances in southern Papua New Guinea and northeastern Australia, provide a scientific basis for the breeding and management of E. pellita.
A randomized block design experiment was conducted, and nested analysis of variance was utilized to analyze the growth rhythm variation patterns of 98 families from nine E. pellita provenances. The information of climate and environment factors in various sources were obtained, and Pearson method was used to reveal the correlation between growth traits and geography/climate factors. The fitting results of Logistic, Gompertz and Von Bertalanffy models were compared to select the optimal model, and calculate the growth rhythm of E. pellita. The excellent family selection was carried out by systematic clustering method.
Significant differences were observed in the tree height and DBH of 2.5-year-old E. pellita at provenance and family levels (P<0.05). Furthermore, a significant and positive correlation was found between isothermality and tree height of the provenances, exhibiting typical zonal variation patterns. The Logistic model had the best fitting effect on tree height and DBH of E. pellita. The Logistic model calculated the growth rhythms, with the average values of the maximum acceleration period (T1), maximum deceleration period (T2), and linear growth period (L) for tree height being 96, 636 and 540 d respectively, as well as for DBH being 165, 681 and 516 d respectively. A systematic cluster analysis was conducted using the growth traits of 2.5-year-old E. pellita, and 29 general families, 30 medium families and 39 outstanding families were selected from 98 families. All the families of the three grades were further classified into three categories of I, II and III according to the cluster of growth rhythm T1.
The growth traits and growth rhythm of 2.5-year-old E. pellita exhibited considerable variation at provenance and family levels. The growth rhythm calculated using Logistic model can provide a theoretical basis for optimizing seedling rearing and management, as well as improved variety breeding of E. pellita.
[1] |
刘涛, 谢耀坚. 中国桉树人工林快速发展动因分析与展望[J]. 桉树科技, 2020, 37(4): 38-47.
|
[2] |
梁庭辉. 桉树大径材培育的探索与思考[J]. 农业与技术, 2018, 38(15): 99-100.
|
[3] |
HARWOOD C E. Eucalyptus pellita: An annotated bibliography[M]. Victoria, Australia: CSIRO Forestry and Forest Products, 1998.
|
[4] |
候宽昭, 陈焕镛, 钟观光, 等. 广州植物志[M]. 北京: 科学出版社, 1956.
|
[5] |
GUIMARÃES L M D S, MIRANDA T, DOUGLAS L, et al. Eucalyptus pellita as a source of resistance to rust, ceratocystis wilt and leaf blight[J]. Crop Breeding and Applied Biotechnology, 2010, 10(2): 124-131. doi: 10.12702/1984-7033.v10n02a04
|
[6] |
ZANATA M, FREITAS M L M, SILVA M T, et al. Genetic parameters and gains with selection in open pollinated progeny test of Eucalypyus pellita, in Batatais-SP[J]. Revista do lnstituto Florestal, 2010, 22(2): 233-242. doi: 10.24278/2178-5031.2010222264
|
[7] |
THAVAMANIKUMAR S, ARNOLD R J, LUO J Z, et al. Genomic studies reveal substantial dominant effects and improved genomic predictions in an open-pollinated breeding population of Eucalyptus pellita[J]. G3-Genes Genomes Genetics, 2020, 10(10): 3751-3763. doi: 10.1534/g3.120.401601
|
[8] |
LAPAMMU M, WARBURTON P M, JAPARUDIN Y D, et al. Verification of tolerance to infection by ceratocystis manginecans in clones of Acacia mangium[J]. Journal of Tropical Forest Science, 2023, 35(Special issue): 42-50.
|
[9] |
廖柏勇, 刘丽婷, 莫晓勇, 等. 10年生粗皮桉种源家系选择分析[J]. 华南农业大学学报, 2011, 32(4): 72-77.
|
[10] |
邓冬丽, 韦吉伟, 覃若飞, 等. 粗皮桉不同无性系的生长对比试验[J]. 桉树科技, 2023, 40(1): 21-25.
|
[11] |
门中华, 李生秀. 植物生物节律性研究进展[J]. 生物学杂志, 2009, 26(5): 53-55.
|
[12] |
宋淑媛, 顾宸瑞, 李春旭, 等. 应用曲线模型解析施肥对白桦苗期年高生长节律的影响[J]. 东北林业大学学报, 2021, 49(4): 17-23. doi: 10.3969/j.issn.1000-5382.2021.04.004
|
[13] |
李峰卿, 陈焕伟, 周志春, 等. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选[J]. 植物资源与环境学报, 2018, 27(2): 57-65.
|
[14] |
ZHANG M M, LU N, JIANG L B, et al. Multiple dynamic models reveal the genetic architecture for growth in height of Catalpa bungei in the field[J]. Tree Physiology, 2022, 42(6): 1239-1255. doi: 10.1093/treephys/tpab171
|
[15] |
麻文俊, 王军辉, 张守攻, 等. 楸树无性系苗期年生长参数的分析[J]. 东北林业大学学报, 2010, 38(1): 4-7.
|
[16] |
杨志玲, 杨旭, 谭梓峰, 等. 厚朴不同种源苗期生长模型的拟合[J]. 西北农林科技大学学报(自然科学版), 2011, 39(4): 60-68.
|
[17] |
秦莉, 赵有科, 黄荣凤, 等. 8年生粗皮桉生长应变及生长遗传变异[J]. 中南林业科技大学学报, 2008, 28(1): 58-63.
|
[18] |
刘晓华, 罗建中, 卢万鸿, 等. 两个连续世代粗皮桉生长与抗风能力遗传特征[J]. 分子植物育种, 2017, 15(12): 5103-5111.
|
[19] |
王楚彪, 杨艳, 白卫国, 等. 粗皮桉近红外光谱差异与其遗传差异间的关系[J]. 光谱学与光谱分析, 2021, 41(11): 3399-3404.
|
[20] |
王楚彪, 王建忠, 李华强, 等. 16个粗皮桉种源遗传特征分析及选优[J]. 热带亚热带植物学报, 2022, 30(1): 54-62.
|
[21] |
胡兴峰, 吴帆, 孙晓波, 等. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 203-212.
|
[22] |
何霞, 邓成, 杨嘉麒, 等. 苦楝种源间生长性状的早期地理变异分析[J]. 北京林业大学学报, 2018, 40(7): 45-54.
|
[23] |
张沛健. 雷琼地区尾细桉纸浆林立地质量评价及生长规律研究[D]. 北京: 中国林业科学研究院, 2023.
|
[24] |
凡美玲, 方水元, 冯俊娇, 等. 4个竹种高生长模型的比较[J]. 竹子学报, 2018, 37(2): 64-70.
|
[25] |
ZHENG Z, FANG K, CHEN Y, et al. Is the Pinus massoniana lamb. tree-ring latewood formation influenced by the diurnal temperature range in humid subtropical China[J]. Forests, 2022, 13(9): 1439. doi: 10.3390/f13091439
|
[26] |
杨斌. 柳树苗期年生长模型的研究[J]. 西北林学院学报, 2006, 21(6): 97-99.
|
[27] |
万志兵, 冯刚, 朱成磊, 等. 不同柳树无性系一年生生长差异分析[J]. 分子植物育种, 2018, 16(7): 2358-2363.
|
[28] |
童洁, 石玉立. 加格达奇3种森林类型树高−胸径的曲线拟合[J]. 东北林业大学学报, 2017, 45(2): 6-11.
|
[29] |
和滢埝, 唐军荣, 李亚麒, 等. 氮磷添加对云南松苗木生长节律的影响[J]. 云南农业大学学报(自然科学), 2023, 38(3): 465-475.
|
[30] |
朱雅静, 王雪, 王丹等. 不同干型云南松子代苗木生长性状与异速生长分析[J]. 云南农业大学学报(自然科学), 2021, 36(6): 1044-1050.
|
[31] |
XIAO L, FANG Y, ZHANG H, et al. Natural variation in the prolyl 4-hydroxylase gene PtoP4H9 contributes to perennial stem growth in Populus[J] The Plant Cell, 2023, 35(11): 4046-4065.
|
[32] |
王玉虓, 史雯茜, 李倩中, 等. 元宝枫1年生苗木生长模型的拟合[J/OL]. 分子植物育种, (2023-12-06) [2024-04-26]. https://link.cnki.net/urlid/46.1068.S.20231205.1107.004.
|
[33] |
张力斌, 何明珠, 张珂. 柠条锦鸡儿生物量分配规律与异速生长对氮、磷添加的响应[J]. 生态学报, 2023, 43(16): 6627-6636.
|
[34] |
乔栋, 刘勇, 田书勇, 等. 不同土壤水势对毛白杨苗木生长节律和苗木质量的影响[J]. 北京林业大学学报, 2022, 44(4): 12-23.
|
[35] |
付威, 韦素云, 陈赢男. 植物生长发育动态QTL解析研究进展[J]. 生物技术通报, 2024, 40(2): 9-19.
|
[36] |
邬荣领, 王明庥, 黄敏仁, 等. 黑杨派新无性系研究: Ⅵ: 苗期年生长的动态分析[J]. 南京林业大学学报(自然科学版), 1988(4): 1-12.
|