LIU Longshen, LIU Luo, ZHOU Jie, et al. Research progress on precision breeding and intelligent sensing technologies for sows[J]. Journal of South China Agricultural University, 2024, 45(5): 635-648. DOI: 10.7671/j.issn.1001-411X.202404037
    Citation: LIU Longshen, LIU Luo, ZHOU Jie, et al. Research progress on precision breeding and intelligent sensing technologies for sows[J]. Journal of South China Agricultural University, 2024, 45(5): 635-648. DOI: 10.7671/j.issn.1001-411X.202404037

    Research progress on precision breeding and intelligent sensing technologies for sows

    More Information
    • Author Bio:

      LIU Longshen:   刘龙申,博士,副教授。现任江苏智慧牧业装备科技创新中心副主任,农业农村部养殖装备重点实验室骨干成员,中国畜牧兽医学会信息技术分会委员,中国农业机械学会青年工作委员会委员,联合国粮食及农业组织(FAO)“动物疾病早期检测”专家库成员。研究方向为畜禽精准养殖智慧管控技术装备,针对我国畜禽养殖装备智能化水平低、动物健康福利条件差等关键性问题,研究了围产期母猪行为智能检测、母猪分娩监测预警技术、仔猪行为识别及健康评估技术等,建立了母仔猪一体化管控平台,创制了围产期母猪智能精准饲喂装备,全面提高了仔猪存活率和母仔猪健康福利水平。主持国家及省部级科研项目10余项,包括国家自然科学基金面上项目、青年基金、国家重点研发计划子课题等。2019年入选了江苏省高层次创新创业人才引进计划。在《Computers and Electronics in Agriculture》 《Biosystems Engineering》等学术权威杂志上发表论文10余篇,获得国家专利及软件著作权16项,荣获江苏省科学技术二等奖等省部级奖励5项

    • Received Date: April 23, 2024
    • Available Online: June 05, 2024
    • Published Date: June 18, 2024
    • The growth conditions, reproductive performance, and health status of sows are important indicators for swine farm management. It directly relates to the economic benefits of pig farm. There are still prominent problems for sow farming in China, such as low level of production management intelligence, inefficient health management, and low productivity, which restrict the high-quality development of breeding industry in China. This article reviewed the research and development status of growth, physiological and health monitoring in precision breeding management of sows from three aspects, including sow growth information perception technology, reproductive behavior monitoring technology, and health status perception technology. The weak links of precision breeding technologies for sows were analyzed. The suggestions for the construction of future intelligent control system for sow breeding were proposed, and the development trends of precision breeding technologies for sows were prospected. This work aims to provide references for the green, efficient and intelligent transformation and upgrading of pig farming industry and the construction of intelligent pig farm in China.

    • [1]
      杨亮, 王辉, 陈睿鹏, 等. 智能养猪工厂的研究进展与展望[J]. 华南农业大学学报, 2023, 44(1): 13-23. doi: 10.7671/j.issn.1001-411X.202209050
      [2]
      丰崇林, 赵正侣, 周国泰, 等. 非洲猪瘟防控常态下生猪疫病防控工作的思考[J]. 今日畜牧兽医, 2022, 38(9): 27-28. doi: 10.3969/j.issn.1673-4092.2022.09.013
      [3]
      贾智宁, 翟海华, 苏红, 等. 中美生猪养殖管理与生物安全操作情况对比[J]. 中国动物检疫, 2021, 38(5): 37-42. doi: 10.3969/j.issn.1005-944X.2021.05.009
      [4]
      李南西, 何晓涛, 周元清. 中外畜牧业氨减排政策与技术比较[J]. 中国畜牧业, 2024(2): 41-42.
      [5]
      王怀禹. 我国养猪智能化发展研究与应用进展[J]. 猪业科学, 2021, 38(9): 38-41.
      [6]
      张利娟, 张亮. 智能化检测方法在母猪发情鉴定中的应用[J]. 猪业科学, 2019, 36(11): 114-116. doi: 10.3969/j.issn.1673-5358.2019.11.033
      [7]
      王晨阳, 任志强, 庞卫军. 智能感知技术在猪饲养管理中的应用研究进展[J]. 养猪, 2020(6): 82-88. doi: 10.3969/j.issn.1002-1957.2020.06.028
      [8]
      张东伟, 刘则学, 王向明. 妊娠后期母猪体况评分、背膘厚度及胎次对繁殖性能的影响[J]. 畜牧与饲料科学, 2023, 44(6): 94-99. doi: 10.12160/j.issn.1672-5190.2023.06.012
      [9]
      严劲涛. 计算机视觉技术在智能养猪中的研究进展[J]. 中国畜牧杂志, 2019, 55(12): 38-42.
      [10]
      周书伟, 朱中平, 彭天舒. 母猪体况管理关键控制点及注意事项[J]. 今日养猪业, 2023(6): 62-65.
      [11]
      KNAUER M T, BAITINGER D J. The sow body condition caliper[J]. Applied Engineering in Agriculture, 2015, 31(2): 175-178.
      [12]
      刘红刚, 张丽慧, 钟林忆, 等. 基于数字孪生的智慧猪场管理平台设计与应用研究[J]. 现代农业装备, 2022, 43(6): 38-44. doi: 10.3969/j.issn.1673-2154.2022.06.007
      [13]
      相学敬. 畜牧兽医领域中营养管理对动物生产性能的影响研究[J]. 吉林畜牧兽医, 2024, 45(1): 145-147. doi: 10.3969/j.issn.1672-2078.2024.01.050
      [14]
      XUE H, SUN Y, CHEN J, et al. CAT-CBAM-Net: An automatic scoring method for sow body condition based on CNN and transformer[J]. Sensors, 2023, 23(18): 7919. doi: 10.3390/s23187919
      [15]
      HE H, CHEN C, ZHANG W, et al. Body condition scoring network based on improved YOLOX[J]. Pattern Analysis and Applications, 2023, 26(3): 1071-1087. doi: 10.1007/s10044-023-01171-x
      [16]
      LIU Z, CHEN X, PAN B, et al. Study on pig body condition scoring based on deep learning model EfficientNet-B0[J]. Academic Journal of Computing & Information Science, 2023, 6(6): 156-162.
      [17]
      滕光辉, 申志杰, 张建龙, 等. 基于Kinect传感器的无接触式母猪体况评分方法[J]. 农业工程学报, 2018, 34(13): 211-217. doi: 10.11975/j.issn.1002-6819.2018.13.025
      [18]
      WHITTEMORE C T, SCHOFIELD C P. A case for size and shape scaling for understanding nutrient use in breeding sows and growing pigs[J]. Livestock Production Science, 2000, 65(3): 203-208. doi: 10.1016/S0301-6226(99)00136-0
      [19]
      胡肄农, 仇振升, 朱红宾, 等. 一种牛动态称重系统的研发[J]. 中国畜禽种业, 2023, 19(10): 51-54. doi: 10.3969/j.issn.1673-4556.2023.10.010
      [20]
      WANG Y, YANG W, WALKER L T, et al. Enhancing the accuracy of area extraction in machine vision-based pig weighing through edge detection[J]. International Journal of Agricultural and Biological Engineering, 2008, 1(1): 37-42.
      [21]
      BANHAZI T M, TSCHARKE M, FERDOUS W M, et al. Improved image analysis based system to reliably predict the live weight of pigs on farm: Preliminary results[J]. Australian Journal of Multi-disciplinary Engineering, 2011, 8(2): 107-119. doi: 10.1080/14488388.2011.11464830
      [22]
      张凯, 王春光, 刘涛, 等. 基于计算机视觉技术育肥猪体重分析研究[J]. 农机化研究, 2017, 39(5): 32-36. doi: 10.3969/j.issn.1003-188X.2017.05.006
      [23]
      武尧, 刘振宇, 谷亚宁, 等. 基于机器视觉的母猪体重估测[J]. 电子技术与软件工程, 2020(1): 100-101.
      [24]
      ZHANG J, ZHUANG Y, JI H, et al. Pig weight and body size estimation using a multiple output regression convolutional neural network: A fast and fully automatic method[J]. Sensors, 2021, 21(9): 3218. doi: 10.3390/s21093218
      [25]
      LI G, LIU X, MA Y, et al. Body size measurement and live body weight estimation for pigs based on back surface point clouds[J]. Biosystems Engineering, 2022, 218: 10-22. doi: 10.1016/j.biosystemseng.2022.03.014
      [26]
      LIU Z, HUA J, XUE H, et al. Body weight estimation for pigs based on 3D hybrid filter and convolutional neural network[J]. Sensors, 2023, 23(18): 7730. doi: 10.3390/s23187730
      [27]
      CANG Y, HE H, QIAO Y. An intelligent pig weights estimate method based on deep learning in sow stall environments[J]. IEEE Access, 2019, 7: 164867-164875. doi: 10.1109/ACCESS.2019.2953099
      [28]
      刘波, 朱伟兴, 霍冠英. 生猪轮廓红外与光学图像的融合算法[J]. 农业工程学报, 2013, 29(17): 113-120. doi: 10.3969/j.issn.1002-6819.2013.17.015
      [29]
      刘同海, 滕光辉, 付为森, 等. 基于机器视觉的猪体体尺测点提取算法与应用[J]. 农业工程学报, 2013, 29(2): 161-168.
      [30]
      杜晓冬, 李笑笑, 樊士冉, 等. 生猪体尺检测和体重预估方法研究进展[J]. 中国畜牧杂志, 2023, 59(1): 41-46.
      [31]
      李卓, 杜晓冬, 毛涛涛, 等. 基于深度图像的猪体尺检测系统[J]. 农业机械学报, 2016, 47(3): 311-318. doi: 10.6041/j.issn.1000-1298.2016.03.044
      [32]
      尹令, 蔡更元, 田绪红, 等. 多视角深度相机的猪体三维点云重构及体尺测量[J]. 农业工程学报, 2019, 35(23): 201-208. doi: 10.11975/j.issn.1002-6819.2019.23.025
      [33]
      程维波, 吴德胜, 李辉, 等. 母猪智能化精准饲喂系统研究现状及展望[J]. 农业工程, 2021, 11(3): 37-42. doi: 10.3969/j.issn.2095-1795.2021.03.008
      [34]
      戴江河, 张军, 王秀锦, 等. 烯丙孕素对初产断奶母猪发情影响的试验[J]. 猪业科学, 2022, 39(2): 112-113. doi: 10.3969/j.issn.1673-5358.2022.02.030
      [35]
      肖非. 浅谈规模化猪场母猪繁殖管理的要点[J]. 今日养猪业, 2023(4): 10-11.
      [36]
      丁兆忠, 韩慕俊, 吴忠良. 母猪的发情鉴定与适时配种[J]. 山东畜牧兽医, 2014, 35(2): 32. doi: 10.3969/j.issn.1007-1733.2014.02.018
      [37]
      赵云翔, 邓浩辉, 黄山珊, 等. 丹系母猪断奶后发情和排卵规律的研究[J]. 畜牧与兽医, 2018, 50(4): 13-16.
      [38]
      JOHNSON J S, SHADE K A. Characterizing body temperature and activity changes at the onset of estrus in replacement gilts[J]. Livestock Science, 2017, 199: 22-24. doi: 10.1016/j.livsci.2017.03.004
      [39]
      王凯, 刘春红, 段青玲. 基于MFO-LSTM的母猪发情行为识别[J]. 农业工程学报, 2020, 36(14): 211-219. doi: 10.11975/j.issn.1002-6819.2020.14.026
      [40]
      CHEN P, YIN D, YANG B, et al. A fusion feature for the oestrous sow sound identification based on convolutional neural networks[J]. Journal of Physics: Conference Series, 2022, 2203: 012049. doi: 10.1088/1742-6596/2203/1/012049
      [41]
      WANG Y, LI S, ZHANG H, et al. A lightweight CNN-based model for early warning in sow oestrus sound monitoring[J]. Ecological Informatics, 2022, 72: 101863. doi: 10.1016/j.ecoinf.2022.101863
      [42]
      FRESON L, GODRIE S, BOS N, et al. Validation of an infra-red sensor for oestrus detection of individually housed sows[J]. Computers and Electronics in Agriculture, 1998, 20(1): 21-29. doi: 10.1016/S0168-1699(98)00005-2
      [43]
      CORNOU C, VINTHER J, KRISTENSEN A R. Automatic detection of oestrus and health disorders using data from electronic sow feeders[J]. Livestock Science, 2008, 118(3): 262-271. doi: 10.1016/j.livsci.2008.02.004
      [44]
      SEO K, MIN B, KIM D, et al. Estrus detection in sows based on texture analysis of pudendal images and neural network analysis[J]. Journal of Biosystems Engineering, 2012, 37(4): 271-278. doi: 10.5307/JBE.2012.37.4.271
      [45]
      XU Z, SULLIVAN R, ZHOU J, et al. Detecting sow vulva size change around estrus using machine vision technology[J]. Smart Agricultural Technology, 2023, 3: 100090. doi: 10.1016/j.atech.2022.100090
      [46]
      庄晏榕, 余炅桦, 滕光辉, 等. 基于卷积神经网络的大白母猪发情行为识别方法研究[J]. 农业机械学报, 2020, 51(S1): 364-370. doi: 10.6041/j.issn.1000-1298.2020.S1.043
      [47]
      LEI K, ZONG C, DU X, et al. Oestrus analysis of sows based on bionic boars and machine vision technology[J]. Animals, 2021, 11(6): 1485. doi: 10.3390/ani11061485
      [48]
      薛鸿翔, 沈明霞, 刘龙申, 等. 基于改进YOLO v5s的经产母猪发情检测方法研究[J]. 农业机械学报, 2023, 54(1): 263-270. doi: 10.6041/j.issn.1000-1298.2023.01.026
      [49]
      沈明霞, 刘龙申, 闫丽, 等. 畜禽养殖个体信息监测技术研究进展[J]. 农业机械学报, 2014, 45(10): 245-251. doi: 10.6041/j.issn.1000-1298.2014.10.038
      [50]
      CORNOU C, LUNDBYE-CHRISTENSEN S. Classifying sows’ activity types from acceleration patterns: an application of the multi-process Kalman filter[J]. Applied Animal Behaviour Science, 2008, 111(3/4): 262-273.
      [51]
      APARNA U, PEDERSEN L J, JØRGENSEN E. Hidden phase-type Markov model for the prediction of onset of farrowing for loose-housed sows[J]. Computers and Electronics in Agriculture, 2014, 108: 135-147. doi: 10.1016/j.compag.2014.07.008
      [52]
      TRAULSEN I, SCHEEL C, AUER W, et al. Using acceleration data to automatically detect the onset of farrowing in sows[J]. Sensors, 2018, 18(1): 170. doi: 10.1109/JSEN.2017.2766638
      [53]
      刘龙申, 沈明霞, 姚文, 等. 基于加速度传感器的母猪产前行为特征采集与分析[J]. 农业机械学报, 2013, 44(3): 192-196. doi: 10.6041/j.issn.1000-1298.2013.03.035
      [54]
      MANTEUFFEL C, HARTUNG E, SCHMIDT M, et al. Towards qualitative and quantitative prediction and detection of parturition onset in sows using light barriers[J]. Computers and Electronics in Agriculture, 2015, 116: 201-210. doi: 10.1016/j.compag.2015.06.017
      [55]
      张光跃, 刘龙申, 沈明霞, 等. 基于超声波的母猪产前行为监测系统设计[J]. 中国农业大学学报, 2017, 22(8): 109-115. doi: 10.11841/j.issn.1077-4333.2017.08.14
      [56]
      钟艳. 母猪的分娩预测及管理[J]. 饲料博览, 2019(6): 83. doi: 10.3969/j.issn.1001-0084.2019.06.044
      [57]
      KÜSTER S, KARDEL M, AMMER S, et al. Usage of computer vision analysis for automatic detection of activity changes in sows during final gestation[J]. Computers and Electronics in Agriculture, 2020, 169: 105177. doi: 10.1016/j.compag.2019.105177
      [58]
      LUO Y, ZENG Z, LU H, et al. Posture detection of individual pigs based on lightweight convolution neural networks and efficient channel-wise attention[J]. Sensors, 2021, 21(24): 8369. doi: 10.3390/s21248369
      [59]
      SEO J, AHN H, KIM D, et al. EmbeddedPigDet: Fast and accurate pig detection for embedded board implementations[J]. Applied Sciences, 2020, 10(8): 2878. doi: 10.3390/app10082878
      [60]
      薛月菊, 朱勋沐, 郑婵, 等. 基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态[J]. 农业工程学报, 2018, 34(9): 189-196.
      [61]
      刘龙申, 沈明霞, 柏广宇, 等. 基于机器视觉的母猪分娩检测方法研究[J]. 农业机械学报, 2014, 45(3): 237-242.
      [62]
      张弛, 沈明霞, 刘龙申, 等. 基于机器视觉的新生仔猪目标识别方法研究与实现[J]. 南京农业大学学报, 2017, 40(1): 169-175.
      [63]
      沈明霞, 太猛, CEDRIC O, 等. 基于深层卷积神经网络的初生仔猪目标实时检测方法[J]. 农业机械学报, 2019, 50(8): 270-279. doi: 10.6041/j.issn.1000-1298.2019.08.030
      [64]
      CHEN J, ZHOU J, LIU L, et al. Sow farrowing early warning and supervision for embedded board implementations[J]. Sensors, 2023, 23(2): 727. doi: 10.3390/s23020727
      [65]
      MELLOR D J. Updating animal welfare thinking: Moving beyond the “five freedoms” towards “a life worth living”[J]. Animals, 2016, 6(3): 21. doi: 10.3390/ani6030021
      [66]
      闫丽, 沈明霞, 姚文, 等. 基于MPU6050传感器的哺乳期母猪姿态识别方法[J]. 农业机械学报, 2015, 46(5): 279-285. doi: 10.6041/j.issn.1000-1298.2015.05.040
      [67]
      WURTZ K, CAMERLINK I, D EATH R B, et al. Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review[J]. PloS One, 2019, 14(12): e0226669. doi: 10.1371/journal.pone.0226669
      [68]
      LAO F, BROWN-BRANDL T, STINN J P, et al. Automatic recognition of lactating sow behaviors through depth image processing[J]. Computers and Electronics in Agriculture, 2016, 125: 56-62. doi: 10.1016/j.compag.2016.04.026
      [69]
      YANG A, HUANG H, ZHENG B, et al. An automatic recognition framework for sow daily behaviours based on motion and image analyses[J]. Biosystems Engineering, 2020, 192: 56-71. doi: 10.1016/j.biosystemseng.2020.01.016
      [70]
      WANG M, LARSEN M, BAYER F, et al. A PCA-based frame selection method for applying CNN and LSTM to classify postural behaviour in sows[J]. Computers and Electronics in Agriculture, 2021, 189: 106351. doi: 10.1016/j.compag.2021.106351
      [71]
      YANG A, HUANG H, ZHENG C, et al. High-accuracy image segmentation for lactating sows using a fully convolutional network[J]. Biosystems Engineering, 2018, 176: 36-47. doi: 10.1016/j.biosystemseng.2018.10.005
      [72]
      甘海明, 薛月菊, 李诗梅, 等. 基于时空信息融合的母猪哺乳行为识别[J]. 农业机械学报, 2020, 51(S1): 357-363. doi: 10.6041/j.issn.1000-1298.2020.S1.042
      [73]
      STAVRAKAKIS S, LI W, GUY J H, et al. Validity of the Microsoft Kinect sensor for assessment of normal walking patterns in pigs[J]. Computers and Electronics in Agriculture, 2015, 117: 1-7. doi: 10.1016/j.compag.2015.07.003
      [74]
      朱家骥, 朱伟兴. 基于星状骨架模型的猪步态分析[J]. 江苏农业科学, 2015, 43(12): 453-457.
      [75]
      刘波, 朱伟兴, 杨建军, 等. 基于深度图像和生猪骨架端点分析的生猪步频特征提取[J]. 农业工程学报, 2014, 30(10): 131-137. doi: 10.3969/j.issn.1002-6819.2014.10.016
      [76]
      ZHANG Y, CAI J, XIAO D, et al. Real-time sow behavior detection based on deep learning[J]. Computers and Electronics in Agriculture, 2019, 163: 104884. doi: 10.1016/j.compag.2019.104884
      [77]
      RACEWICZ P, LUDWICZAK A, SKRZYPCZAK E, et al. Welfare health and productivity in commercial pig herds[J]. Animals, 2021, 11(4): 1176. doi: 10.3390/ani11041176
      [78]
      KRIZANAC D, HAUGK M, STERZ F, et al. Tracheal temperature for monitoring body temperature during mild hypothermia in pigs[J]. Resuscitation, 2010, 81(1): 87-92. doi: 10.1016/j.resuscitation.2009.10.006
      [79]
      ANDERSEN H M, JØRGENSEN E, DYBKJÆR L, et al. The ear skin temperature as an indicator of the thermal comfort of pigs[J]. Applied Animal Behaviour Science, 2008, 113(1/2/3): 43-56. doi: 10.1016/j.applanim.2007.11.003
      [80]
      柏广宇, 刘龙申, 沈明霞, 等. 基于无线传感器网络的母猪体温实时监测节点研制[J]. 南京农业大学学报, 2014, 37(5): 128-134. doi: 10.7685/j.issn.1000-230.2014.05.021
      [81]
      SIEWERT C, DÄNICKE S, KERSTEN S, et al. Difference method for analysing infrared images in pigs with elevated body temperatures[J]. Zeitschrift Für Medizinische Physik, 2014, 24(1): 6-15.
      [82]
      AMEZCUA R, WALSH S, LUIMES P H, et al. Infrared thermography to evaluate lameness in pregnant sows[J]. The Canadian Veterinary Journal, 2014, 55(3): 268.
      [83]
      田浩楠, 华婧伊, 张少帅, 等. 基于红外热成像与线性回归拟合的母猪体温检测技术研究[J]. 智能化农业装备学报(中英文), 2023, 4(1): 36-41.
      [84]
      FERRARI S, SILVA M, GUARINO M, et al. Cough sound analysis to identify respiratory infection in pigs[J]. Computers and Electronics in Agriculture, 2008, 64(2): 318-325. doi: 10.1016/j.compag.2008.07.003
      [85]
      CHUNG Y, OH S, LEE J, et al. Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems[J]. Sensors, 2013, 13: 12929-12942. doi: 10.3390/s131012929
      [86]
      徐亚妮, 沈明霞, 闫丽, 等. 待产梅山母猪咳嗽声识别算法的研究[J]. 南京农业大学学报, 2016, 39(4): 681-687. doi: 10.7685/jnau.201510035
      [87]
      马辉栋, 刘振宇. 语音端点检测算法在猪咳嗽检测中的应用研究[J]. 山西农业大学学报(自然科学版), 2016, 36(6): 445-449.
      [88]
      董红松, 刘振宇, 马辉栋, 等. 语音增强在去除猪咳嗽噪声中的应用研究[J]. 山西农业大学学报(自然科学版), 2017, 37(11): 831-836.
      [89]
      赵建, 黎煊, 刘望宏, 等. 基于DNN-HMM声学模型的连续猪咳嗽声识别[J]. 农业工程技术, 2020, 40(30): 93.
      [90]
      龚永杰, 黎煊, 高云, 等. 基于矢量量化的猪咳嗽声识别[J]. 华中农业大学学报, 2017, 36(3): 119-124.
      [91]
      张振华, 田建艳, 王芳, 等. 猪咳嗽声特征参数提取与识别的研究[J]. 黑龙江畜牧兽医, 2017(23): 18-22.
      [92]
      黎煊, 赵建, 高云, 等. 基于深度信念网络的猪咳嗽声识别[J]. 农业机械学报, 2018, 49(3): 179-186. doi: 10.6041/j.issn.1000-1298.2018.03.022
      [93]
      沈明霞, 王梦雨, 刘龙申, 等. 基于深度神经网络的猪咳嗽声识别方法[J]. 农业机械学报, 2022, 53(5): 257-266. doi: 10.6041/j.issn.1000-1298.2022.05.026
      [94]
      YIN Y, TU D, SHEN W, et al. Recognition of sick pig cough sounds based on convolutional neural network in field situations[J]. Information Processing in Agriculture, 2021, 8(3): 369-379. doi: 10.1016/j.inpa.2020.11.001
      [95]
      SHEN W, TU D, YIN Y, et al. A new fusion feature based on convolutional neural network for pig cough recognition in field situations[J]. Information Processing in Agriculture, 2021, 8(4): 573-580. doi: 10.1016/j.inpa.2020.11.003
    • Cited by

      Periodical cited type(7)

      1. 陈灿,陈维林,丁浩,陈兰,张跟喜,谢恺舟,戴国俊,王金玉,张涛. 白羽王鸽胚胎期胸肌肌纤维发育规律及相关基因表达分析. 中国畜牧杂志. 2023(07): 99-104 .
      2. 陈秋阳,朱康平,罗毅,沈林園,朱砺,甘麦邻. 猪原代骨骼肌卫星细胞的快速分离、培养和诱导分化研究. 中国畜牧杂志. 2023(08): 118-123 .
      3. 张力,许加龙,黄锦钰,许子月,雷昕诺,卢会鹏,朱睿,孙伟翔,曹海月,王安平,朱善元. 鹅骨骼肌卫星细胞的分离培养与鉴定. 畜牧兽医学报. 2023(10): 4186-4195 .
      4. 王燕星,张雨时,姬海港,刘阳,牛玉芳,韩瑞丽,刘小军,田亚东,康相涛,李转见. 鸡骨骼肌卫星细胞系的建立及分析. 畜牧兽医学报. 2023(12): 4972-4981 .
      5. 戴巍,宋瑞龙,张远浩,邹辉,顾建红,袁燕,卞建春,刘学忠. 鸡骨骼肌卫星细胞的分离培养与鉴定. 畜牧兽医学报. 2021(03): 676-682 .
      6. 马思佳,刘媛,汪序忠,李亭亭,段星,杨松柏,宋丹,李向臣. 褪黑素对脂多糖刺激的滩羊骨骼肌卫星细胞炎性因子表达的影响. 中国畜牧兽医. 2021(09): 3378-3386 .
      7. 徐小春,赵瑞,陈文娟,马文平,马森. 滩羊骨骼肌卫星细胞体外培养及成肌和成脂诱导分化研究. 家畜生态学报. 2020(12): 32-39 .

      Other cited types(4)

    Catalog

      Article views (544) PDF downloads (119) Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return