Citation: | TIAN Weibin, ZHANG Yinong, REN Feifei, et al. Regulation of AcMNPV proliferation by exosomal microRNA in Spodoptera frugiperda Sf9 cells[J]. Journal of South China Agricultural University, 2025, 46(2): 133-140. DOI: 10.7671/j.issn.1001-411X.202404027 |
To investigate the effect of Spodoptera frugiperda Sf9 cell exosomal microRNA (miRNA) on proliferation of Autographa californica multiple nucleopolyhedrovirus (AcMNPV).
Exosomes were purified using discontinuous sucrose mass fraction gradient ultracentrifugation. Then the purified exosome samples were observed under transmission electron microscopy, and conducted particle diameter analysis using nanoparticle tracking analysis. By sRNA hight throughput sequencing analysis, exosomally differentially expressed miRNAs were identified and biological pathways corresponding to their potential target genes were predicted. Cellular experiments such as mimic transfection and virus infection, as well as qPCR were performed to verify the differential expression of exosomal miRNAs, and detect the effect of the differentially expressed miRNA of sfr-miR-1a-3p on the proliferation of AcMNPV.
Exosomes from Sf9 cells were successfully purified, and AcMNPV infection effectively stimulated exosome secretion from Sf9 cells. After 72 h of AcMNPV infection in Sf9 cells, a total of 11 differentially expressed miRNAs were identified in exosomal miRNAs comparing with the Rfam database, in which eight miRNAs’ transcription levels showed consistent trends with the sequencing results. Potential target genes were mainly enriched in the cAMP signaling pathway, PI3K-Akt signaling pathway, cancer pathway, and human papilloma virus signaling pathway, suggesting that differentially expressed exosomal miRNAs might participate in insect innate immune responses. Overexpressing sfr-miR-1a-3p significantly promoted the expression level of the AcMNPV gene vp39.
This study conducts sRNA sequencing to screen differentially expressed miRNAs in AcMNPV-infected Sf9 cell exosomes, demonstrating that AcMNPV promotes infection by enhancing exosome secretion and affecting surrounding uninfected cells via miRNA sfr-miR-1a-3p transfer. This research provides an important theoretical support for understanding the mechanism by which insect exosomal miRNAs regulate virus proliferation.
[1] |
崔志斌, 李智群, 王勇, 等. 草地贪夜蛾研究现状及防控策略[J]. 湖南农业科学, 2020(4): 38-42.
|
[2] |
谭心阳, 赵海婷, 曹美伦, 等. 国内草地贪夜蛾发生、为害及防治现状[J]. 现代农药, 2022, 21(5): 13-20.
|
[3] |
李颖, 孙兴鲁, 浦冠勤. 昆虫杆状病毒杀虫剂的研究进展[J]. 中国蚕业, 2010, 31(4): 12-14. doi: 10.3969/j.issn.1007-0982.2010.04.003
|
[4] |
COCUCCI E, MELDOLESI J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles[J]. Trends in Cell Biology, 2015, 25(6): 364-372. doi: 10.1016/j.tcb.2015.01.004
|
[5] |
KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. doi: 10.1126/science.aau6977
|
[6] |
THÉRY C, WITWER K W, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. Journal of Extracellular Vesicles, 2018, 7(1): 1535750. doi: 10.1080/20013078.2018.1535750
|
[7] |
MATHIEU M, MARTIN-JAULAR L, LAVIEU G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nature Cell Biology, 2019, 21(1): 9-17. doi: 10.1038/s41556-018-0250-9
|
[8] |
KEERTHIKUMAR S, CHISANGA D, ARIYARATNE D, et al. ExoCarta: A web-based compendium of exosomal cargo[J]. Journal of Molecular Biology, 2016, 428(4): 688-692. doi: 10.1016/j.jmb.2015.09.019
|
[9] |
PATHAN M, FONSEKA P, CHITTI S V, et al. Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles[J]. Nucleic Acids Research, 2019, 47(D1): D516-D519. doi: 10.1093/nar/gky1029
|
[10] |
VAN BALKOM B W M, EISELE A S, PEGTEL D M, et al. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting[J]. Journal of Extracellular Vesicles, 2015, 4: 26760. doi: 10.3402/jev.v4.26760
|
[11] |
VALADI H, EKSTRÖM K, BOSSIOS A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature Cell Biology, 2007, 9(6): 654-659. doi: 10.1038/ncb1596
|
[12] |
LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. doi: 10.1016/0092-8674(93)90529-Y
|
[13] |
王娇娇, 王泽英, 罗光彬, 等. 动物microRNA研究现状[J]. 动物医学进展, 2014, 35(6): 144-148. doi: 10.3969/j.issn.1007-5038.2014.06.031
|
[14] |
邓昌鑫, 何倩毓. MicroRNA在昆虫中的研究进展[J]. 黑龙江八一农垦大学学报, 2021, 33(5): 15-21. doi: 10.3969/j.issn.1002-2090.2021.05.003
|
[15] |
SINGH C P, SINGH J, NAGARAJU J. A baculovirus-encoded microRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor ran[J]. Journal of Virology, 2012, 86(15): 7867-7879. doi: 10.1128/JVI.00064-12
|
[16] |
WU P, SHANG Q, DWETEH O A, et al. Over expression of bmo-miR-2819 suppresses BmNPV replication by regulating the BmNPV ie-1 gene in Bombyx mori[J]. Molecular Immunology, 2019, 109: 134-139. doi: 10.1016/j.molimm.2019.03.013
|
[17] |
JIA Q, FU Y. MicroRNA-34-5p encoded by Spodoptera frugiperda regulates the replication and infection of Autographa californica multiple nucleopolyhedrovirus by targeting odv-e66, ac78 and ie2[J]. Pest Management Science, 2022, 78(12): 5379-5389. doi: 10.1002/ps.7160
|
[18] |
ZHANG J, ZAFAR J, KONG J, et al. MicroRNA-mediated host immune genes manipulation benefits AcMNPV proliferation in Spodoptera frugiperda[J]. Journal of Agricultural and Food Chemistry, 2023, 71(45): 17175-17187.
|
[19] |
HURWITZ S N, NKOSI D, CONLON M M, et al. CD63 regulates epstein-barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling[J]. Journal of Virology, 2017, 91(5). doi: 10.1128/jvi.02251-16.
|
[20] |
徐小洪. 外泌体与新城疫病毒感染的双向调控机制[D]. 长春: 吉林大学, 2019.
|
[21] |
高维娟, 许顺江, 丛斌, 等. CCK-8抑制LPS作用下大鼠肺间质巨噬细胞NF-κB活性的cAMP-PKA通路研究[J]. 中国病理生理杂志, 2006, 22(10): 1891-1895.
|
[22] |
JIANG L. Insights into the antiviral pathways of the silkworm Bombyx mori[J]. Frontiers in Immunology, 2021, 12: 639092. doi: 10.3389/fimmu.2021.639092
|
[23] |
刘小民, 袁明龙. 昆虫天然免疫相关基因研究进展[J]. 遗传, 2018, 40(6): 451-466.
|
[24] |
DATTA S R, BRUNET A, GREENBERG M E. Cellular survival: A play in three Akts[J]. Genes & Development, 1999, 13(22): 2905-2927.
|
[25] |
YAO R, COOPER G M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor[J]. Science, 1995, 267(5206): 2003-2006. doi: 10.1126/science.7701324
|
[26] |
钟佳琳, 郑立, 贺花, 等. PI3K/Akt信号通路相关的生物学调控机制研究进展[J]. 基因组学与应用生物学, 2019, 38(1): 143-147.
|
[27] |
XIAO W, YANG Y, WENG Q, et al. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells[J]. Virology, 2009, 391(1): 83-89. doi: 10.1016/j.virol.2009.06.007
|
[28] |
WU P, JIANG X, SANG Q, et al. Inhibition of miR-274-3p increases BmCPV replication by regulating the expression of BmCPV NS5 gene in Bombyx mori[J]. Virus Genes, 2017, 53(4): 643-649. doi: 10.1007/s11262-017-1466-7
|
[29] |
DUBEY S K, SHRINET J, JAIN J, et al. Aedes aegypti microRNA miR-2b regulates ubiquitin-related modifier to control chikungunya virus replication[J]. Scientific Reports, 2017, 7: 17666. doi: 10.1038/s41598-017-18043-0
|
[30] |
WU P, JIANG X, GUO X, et al. Genome-wide analysis of differentially expressed microRNA in Bombyx mori infected with nucleopolyhedrosis virus[J]. PLoS One, 2016, 11(11): e0165865. doi: 10.1371/journal.pone.0165865
|