DENG Hongxing, XU Xingshi, WANG Yunfei, et al. Dairy cow body size measurement method based on binocular stereo matching and improved YOLOv8n-Pose keypoint detection[J]. Journal of South China Agricultural University, 2024, 45(5): 802-811. DOI: 10.7671/j.issn.1001-411X.202404001
    Citation: DENG Hongxing, XU Xingshi, WANG Yunfei, et al. Dairy cow body size measurement method based on binocular stereo matching and improved YOLOv8n-Pose keypoint detection[J]. Journal of South China Agricultural University, 2024, 45(5): 802-811. DOI: 10.7671/j.issn.1001-411X.202404001

    Dairy cow body size measurement method based on binocular stereo matching and improved YOLOv8n-Pose keypoint detection

    More Information
    • Received Date: March 31, 2024
    • Available Online: July 03, 2024
    • Published Date: July 07, 2024
    • Objective 

      To realize accurate measurement of dairy cow body size, and preicisely assess dairy cow body shape.

      Method 

      Addressing the challenges of limited accuracy and low automation in measuring dairy cow body size, a body size measurement method based on binocula stereo matching and improved YOLOv8n-Pose was proposed. The deep learning-based CREStereo was applied for stereo matching to obtain depth information. In YOLOv8n-Pose, the SimAM attention mechanism was introduced to focus more on individual dairy cow identification and key point information. Additionally, the CoordConv was employed to enhance the network’s spatial coordinate perception capability.

      Result 

      The improved YOLOv8n-Pose achieved rapid and accurate detection of body size measurement key points for dairy cows. It attained a precision of 94.3%, with model parameters totaling 2.99 M and floating-point operations amounting to 8.40 G. The detection speed reached 55.6 frames/s. By combining stereo matching and improved YOLOv8n-Pose, the maximum average relative error in body size measurement was reduced to 4.19%.

      Conclusion 

      The body size measurement method proposed in this paper achieves high accuracy and rapid detection speed, which can meet the practical requirements of body size measurement.

    • [1]
      COMMUNOD R, GUIDA S, VIGO D, et al. Body measures and milk production, milk fat globules granulometry and milk fatty acid content in cabannina cattle breed[J]. Italian Journal of Animal Science, 2013, 12(1): e18. doi: 10.4081/ijas.2013.e18
      [2]
      RATHBUN F M, PRALLE R S, BERTICS S J, et al. Relationships between body condition score change, prior mid-lactation phenotypic residual feed intake, and hyperketonemia onset in transition dairy cows[J]. Journal of Dairy Science, 2017, 100(5): 3685-3696. doi: 10.3168/jds.2016-12085
      [3]
      王宇. 基于三维点云数据的奶牛体尺测量研究[D]. 郑州: 华北水利水电大学, 2023.
      [4]
      初梦苑, 司永胜, 李前, 等. 家畜体尺自动测量技术研究进展[J]. 农业工程学报, 2022, 38(13): 228-240. doi: 10.11975/j.issn.1002-6819.2022.13.026
      [5]
      TASDEMIR S, URKMEZ A, INAL S. Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis[J]. Computers and Electronics in Agriculture, 2011, 76(2): 189-197. doi: 10.1016/j.compag.2011.02.001
      [6]
      刘同海, 滕光辉, 付为森, 等. 基于机器视觉的猪体体尺测点提取算法与应用[J]. 农业工程学报, 2013, 29(2): 161-168.
      [7]
      薛广顺, 来智勇, 张志毅, 等. 基于双目立体视觉的复杂背景下的牛体点云获取[J]. 计算机工程与设计, 2015, 36(5): 1390-1395.
      [8]
      张晨光, 雷金辉, 陈焰, 等. 基于机器双目视觉的奶牛体尺参数的测量应用[J]. 电子技术应用, 2020, 46(6): 59-62.
      [9]
      赵建敏, 关晓鹏. 基于双目深度估计的牛体尺测量方法设计[J]. 光电子·激光, 2022, 33(4): 429-435.
      [10]
      HUANG L W, GUO H, RAO Q Q, et al. Body dimension measurements of Qinchuan cattle with transfer learning from LiDAR sensing[J]. Sensors, 2019, 19(22): 5046.
      [11]
      初梦苑, 李孟飞, 李前, 等. 基于关键帧提取与头颈部去除的奶牛体尺测量方法[J]. 农业机械学报, 2022, 53(S2): 226-233. doi: 10.6041/j.issn.1000-1298.2022.S2.026
      [12]
      YANG G Y, XU X S, SONG L, et al. Automated measurement of dairy cows body size via 3D point cloud data analysis[J]. Computers and Electronics in Agriculture, 2022, 200: 107218. doi: 10.1016/j.compag.2022.107218
      [13]
      YIN L, ZHU J M, LIU C X, et al. Point cloud-based pig body size measurement featured by standard and non-standard postures[J]. Computers and Electronics in Agriculture, 2022, 199: 107135. doi: 10.1016/j.compag.2022.107135
      [14]
      HU H, YU J C, YIN L, et al. An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size[J]. Computers and Electronics in Agriculture, 2023, 205: 107560. doi: 10.1016/j.compag.2022.107560
      [15]
      陆明洲, 光二颖, 陈子康, 等. 基于双视角图像的山羊体尺自动测量方法[J]. 农业机械学报, 2023, 54(8): 286-295. doi: 10.6041/j.issn.1000-1298.2023.08.028
      [16]
      TRAN T M, TA K D, HOANG M, et al. A study on determination of simple objects volume using ZED stereo camera based on 3D-points and segmentation images[J]. International Journal of Emerging Trends in Engineering Research, 2020, 8(5): 1990-1995. doi: 10.30534/ijeter/2020/85852020
      [17]
      DERIS A, TRIGONIS I, ARAVANIS A, et al. Depth cameras on UAVs: A first approach[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-2/W3: 231-236. doi: 10.5194/isprs-archives-XLII-2-W3-231-2017
      [18]
      HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. New York: Cambridge University Press, 2003.
      [19]
      SCHÖPS T, SCHÖNBERGER J L, GALLIANI S, et al. A multi-view stereo benchmark with high-resolution images and multi-camera videos[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2538-2547.
      [20]
      LI J, WANG P, XIONG P, et al. Practical stereo matching via cascaded recurrent network with adaptive correlation[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 16242-16251.
      [21]
      YANG L X, ZHANG R Y, LI L, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks[C]//PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 11863-11874.
      [22]
      LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the CoordConv solution[EB/OL]. arXiv: 1807.03247 (2018-07-09) [2024-04-01]. https://doi.org/10.48550/arXiv.1807.03247.
      [23]
      LONG X, DENG K P, WANG G Z, et al. PP-YOLO: An effective and efficient implementation of object detector[EB/OL]. arXiv: 2007.12099 (2020-07-23) [2024-04-01]. https://doi.org/10.48550/arXiv.2007.12099.
      [24]
      NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[EB/OL]. arXiv: 1603.06937 (2016-03-22) [2024-04-01]. https://doi.org/10.48550/arXiv.1603.06937.
      [25]
      SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 5693-5703.
      [26]
      LI Y J, YANG S, LIU P D, et al. SimCC: A simple coordinate classification perspective for human pose estimation[EB/OL]. arXiv: 2107.03332 (2021-07-07) [2024-04-01]. https://doi.org/10.48550/arXiv.2107.03332.
      [27]
      JIANG T, LU P, ZHANG L, et al. RTMPose: Real-time multi-person pose estimation based on MMPose[EB/OL]. arXiv: 2303.07399 (2023-03-13) [2024-04-01]. https://doi.org/10.48550/arXiv.2303.07399.

    Catalog

      Article views (722) PDF downloads (81) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return