Citation: | SUN Shunli, TANG Wei, LUO Yuanqiang, et al. Design and optimization of swing arm loading and unloading structure of monorail conveyor for hilly orchard and tea garden[J]. Journal of South China Agricultural University, 2025, 46(2): 246-255. DOI: 10.7671/j.issn.1001-411X.202403027 |
To solve the problem of single function of existing transportation machinery for hilly orchard and tea garden, and traditional lifting and handling equipment being difficult to apply and mainly relying on high intensity manpower, a swing arm loading and unloading structure for monorail conveyor is designed and optimized to meet the loading and unloading needs in hilly orchard and tea garden.
Based on the basic parameters of the electric monorail conveyor in hilly orchard and tea garden, a swing arm loading and unloading scheme was designed with the maximum loading and unloading height of 700 mm and the maximum loading and unloading mass of 200 kg. The motion and force of traditional swing arm loading and unloading structure were analysed, and a rope lifting arm linkage loading and unloading structure was designed through ADAMS parameterized modelling and optimization. Non-dominated sorting genetic algorithms Ⅱ(NSGA-II) was used for multi-objective optimization of the structural dimension. The dynamic simulation, prototype making, as well as load and swing test of rope linked loading and unloading structure were conducted.
The ADAMS parameterized modelling and optimization increased the loading and unloading range and reduced the required hydraulic cylinder driving tension for work. The maximum driving force decreased by 12.0% compared with the traditional swing arm loading and unloading structure. The theoretical maximum driving force was
The designed and optimized swing arm loading and unloading structure can meet the loading and unloading needs of monorail conveyor in hilly orchard and tea garden, and can be applied and promoted in production practice of hilly and mountainous areas.
[1] |
邱海兰, 邓涵韵, 廖文梅. 农村经济转型的国际经验比较、规律及政策启示[J]. 世界农业, 2023(8): 13-25.
|
[2] |
吴伟斌, 韩重阳, 梁荣轩, 等. 基于轮毂电机驱动的山地林果茶园轮式运输车设计与试验[J]. 华中农业大学学报, 2021, 40(3): 286-294.
|
[3] |
陈猛, 张衍林, 李善军, 等. 山地果园手扶式单履带运输车设计与试验[J]. 华中农业大学学报, 2019, 38(1): 125-132.
|
[4] |
李冲冲. 丘陵果园多功能履带运输车的设计与试验[D]. 南京: 南京农业大学, 2018.
|
[5] |
张建莉, 岳丹丹, 吴伟斌, 等. 苗圃田间自走式电动双轨运输机设计与试验[J]. 华中农业大学学报, 2020, 39(6): 113-120.
|
[6] |
程方平, 庹洪章, 易文裕, 等. 山地单轨电动遥控运输机设计与试验[J]. 中国农机化学报, 2022, 43(10): 107-112.
|
[7] |
李善军, 邢军军, 张衍林, 等. 7YGS-45型自走式双轨道山地果园运输机[J]. 农业机械学报, 2011, 42(8): 85-88.
|
[8] |
王乐宁, 侯加林, 李今成, 等. 牵引式方草捆捡拾堆垛机的设计与研究[J]. 农机化研究, 2018, 40(12): 96-100. doi: 10.3969/j.issn.1003-188X.2018.12.018
|
[9] |
BABKOV A, VARAVIN V. Rationale for vehicle parameters for the transportation of straw and hay[J]. BIO Web of Conferences, 2021, 37: 37. doi: 10.1051/bioconf/20213700037
|
[10] |
吴伟斌, 冯运琳, 朱余清, 等. 山地果园轮式运输机自装卸装置的设计与分析[J]. 华中农业大学学报, 2016, 35(4): 113-120.
|
[11] |
张成. 山地果园轮式运输机升降自卸集成平台的设计与试验[D]. 广州: 华南农业大学, 2018.
|
[12] |
胡文武, 吴帆, 蒋蘋, 等. 果园电动双轨运输机启停控制的研究与试验[J]. 河南农业大学学报, 2021, 55(1): 73-79.
|
[13] |
陈卫灵, 陈中武, 岳丹丹, 等. 丘陵山地农业索轨运输机械研究进展与优化措施[J]. 南方农机, 2022, 53(17): 13-16. doi: 10.3969/j.issn.1672-3872.2022.17.003
|
[14] |
聂阳文, 胡星, 闫磊. 基于ADAMS的液压挖掘机工作装置优化分析[J]. 计算机仿真, 2019, 36(11): 300-304. doi: 10.3969/j.issn.1006-9348.2019.11.067
|
[15] |
赵敏, 杨波, 李伟. 液压冲击抑制方法研究现状与展望[J]. 中国农机化学报, 2023, 44(9): 123-130.
|
[16] |
KUMAR A, MAJI K. Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm[J]. Journal of Materials Engineering and Performance, 2020, 29(5): 3334-3352.
|
[17] |
DEV S, SRIVASTAVA R. Experimental investigation and optimization of FDM process parameters for material and mechanical strength[J]. Materials Today: Proceedings, 2020, 26: 1995-1999. doi: 10.1016/j.matpr.2020.02.435
|
[18] |
夏瑞泽, 黄海鸿, 魏邦福, 等. 基于风道系统模块化建模的翅片管蒸发器结构优化[J]. 真空科学与技术学报, 2022, 42(8): 592-600.
|
[19] |
KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
|
[20] |
ZHAO X, LI J, SUN S, et al. Toward structure optimization for the mobile vehicle system based on multiconstraints[J]. Robotic Intelligence and Automation, 2023, 43(1): 75-84. doi: 10.1108/RIA-08-2022-0213
|
[21] |
章培, 唐友刚, 李焱, 等. 基于多目标遗传算法的海上铰接式风力机塔架结构参数优化[J]. 太阳能学报, 2023, 44(8): 460-466.
|
[22] |
李海同, 吴崇友, 沐森林, 等. 基于ANSYS-ADAMS的立式油菜割晒机铺放角形成机理[J]. 农业工程学报, 2020, 36(14): 96-105. doi: 10.11975/j.issn.1002-6819.2020.14.012
|
[23] |
朱惠斌, 吴宪, 白丽珍, 等. 基于EDEM-ADAMS仿真的稻茬地双轴破茬免耕装置研制[J]. 农业工程学报, 2022, 38(19): 10-22. doi: 10.11975/j.issn.1002-6819.2022.19.002
|
[24] |
周剑青, 屈福政, 祝德强, 等. 索道用钢丝绳轴向弹性模量有限元仿真研究[J]. 机械设计与制造, 2024(2): 94-104.
|
[25] |
陈松阳, 欧阳联格, 张梁, 等. 螺旋式臂架系统固定支座结构优化设计[J]. 现代制造工程, 2022(8): 101-108.
|