• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
NING Ruixiang, LIAO Xin, TANG Riyuan. Performance and application of EDTA modified carbon nitride in adsorbing ammonia nitrogen in fish ponds[J]. Journal of South China Agricultural University, 2025, 46(2): 230-237. DOI: 10.7671/j.issn.1001-411X.202403001
Citation: NING Ruixiang, LIAO Xin, TANG Riyuan. Performance and application of EDTA modified carbon nitride in adsorbing ammonia nitrogen in fish ponds[J]. Journal of South China Agricultural University, 2025, 46(2): 230-237. DOI: 10.7671/j.issn.1001-411X.202403001

Performance and application of EDTA modified carbon nitride in adsorbing ammonia nitrogen in fish ponds

More Information
  • Received Date: March 01, 2024
  • Available Online: September 12, 2024
  • Published Date: September 17, 2024
  • Objective 

    To prepare modified carbon nitride with enhanced performance in adsorbing ammonia nitrogen in fish ponds.

    Method 

    Carbon nitride (s-C3N4) with basic adsorption capacity was prepared by co-heating of melamine and sodium bicarbonate using the thermal condensation method, and then s-C3N4 was further modified by disodium ethylene diamine tetraacetic acid (EDTA-2Na) to obtain modified carbon nitride (EDTA-s-C3N4). Scanning electron microscope (SEM), X-ray diffraction (XRD), BET surface area, and Zeta potential were used to characterize the materials.

    Result 

    The specific surface area of EDTA-s-C3N4 was as high as 17.7012 m2/g, and the surface potential was −19 mV. It had excellent adsorption performance for ammonia nitrogen in fish ponds with the removal rate of 72% at pH=7.5. The adsorption process conformed to quasi-second-order kinetics, and the maximum adsorption capacity estimated by Langmuir isothermal model fitting was 24.2131 mg/g. After five cycles of regeneration, EDTA-s-C3N4 still had a removal rate of 60% for ammonia nitrogen. The toxicity evaluation proved that EDTA-s-C3N4 was safe and non-toxic to zebrafish.

    Conclusion 

    EDTA-s-C3N4 has good removal effect on ammonia nitrogen in fish ponds. It is safe and non-toxic, and has good practicality.

  • [1]
    张卫强, 朱英. 养殖水体中氨氮的危害及其检测方法研究进展[J] 环境卫生学杂志, 2012, 2(6): 324-327.
    [2]
    LI W W, SHI X L, ZHANG S J, et al. Modelling of ammonia recovery from wastewater by air stripping in rotating packed beds[J]. Science of the Total Environment, 2020, 702: 134971. doi: 10.1016/j.scitotenv.2019.134971
    [3]
    AN S R, JIN Q. Significant removal of ammonia nitrogen in low concentration from aqueous solution at low pH by advanced air stripping[J]. Environmental Science and Pollution Research International, 2021, 28(26): 35113-35125. doi: 10.1007/s11356-021-13164-6
    [4]
    LAVANYA A, RAMESH S K T. Crystal seed-enhanced ammonia nitrogen and phosphate recovery from landfill leachate using struvite precipitation technique[J]. Environmental Science and Pollution Research International, 2021, 28(43): 60569-60584. doi: 10.1007/s11356-021-14950-y
    [5]
    ZHOU S Y, DONG M G, DING X Y, et al. Application of RSM to optimize the recovery of ammonia nitrogen from high chromium effluent produced in vanadium industry using struvite precipitation[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106318. doi: 10.1016/j.jece.2021.106318
    [6]
    HUANG H M, SONG Q W, WANG W J, et al. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process[J]. Journal of Environmental Management, 2012, 101: 68-74. doi: 10.1016/j.jenvman.2011.12.035
    [7]
    刘诗园, 张婷, 高雅娟, 等. 耐高浓度氨氮微生物 Y5 的脱氮特性及应用研究[J]. 工业水处理, 2024, 44(7): 162-170.
    [8]
    章裕, 黄林祥, 汪晓军, 等. 中试沸石曝气生物滤池用于低氨氮废水亚硝化[J]. 环境科学学报, 2024, 44(1): 175-183.
    [9]
    鲁秀国, 盘贤豪, 郑宇佳. 改性及天然沸石对水中氨氮吸附性能的研究[J]. 离子交换与吸附, 2020, 36(6): 520-529.
    [10]
    陈佼, 张建强, 陆一新, 等. 玉米芯生物炭对含盐污水中氨氮的吸附特性[J]. 安全与环境学报, 2017, 17(3): 1088-1093.
    [11]
    王芳君, 桑倩倩, 邓颖, 等. 磁性铁基改性生物炭去除水中氨氮[J]. 环境科学, 2021, 42(4): 1913-1922.
    [12]
    陈徐庆, 唐玉朝, 伍昌年, 等. NaOH改性活性白土对低浓度氨氮的吸附研究[J]. 化学工程, 2022, 50(9): 30-36.
    [13]
    闫婷婷, 江芳, 陈欢. 介孔氮化碳对水中全氟辛烷磺酸的吸附去除研究[J]. 环境科学学报, 2014, 34(6): 1464-1472.
    [14]
    SHEN C C, CHEN C L, WEN T, et al. Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions[J]. Journal of Colloid and Interface Science, 2015, 456: 7-14. doi: 10.1016/j.jcis.2015.06.004
    [15]
    WANG J C, LI H X, YUE D B. Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride[J]. Journal of Hazardous Materials, 2022, 424: 127643. doi: 10.1016/j.jhazmat.2021.127643
    [16]
    中华人民共和国生态环境部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535—2009[S]. 北京: 中国环境科学出版社, 2010.
    [17]
    WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
    [18]
    YANG S B, GONG Y J, ZHANG J S, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456. doi: 10.1002/adma.201204453
    [19]
    SHU Z, WANG Y, WANG W B, et al. A green one-pot approach for mesoporous g-C3N4 nanosheets with in situ sodium doping for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2019, 44(2): 748-756. doi: 10.1016/j.ijhydene.2018.11.025
    [20]
    刘磐. 改性天然沸石对煤化工废水中高浓度 NH4+的吸附和再生方法研究[J]. 工业水处理, 2024, 44(7): 141-149.
    [21]
    JORGENSEN T C, WEATHERLEY L R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants[J]. Water Research, 2003, 37(8): 1723-1728. doi: 10.1016/S0043-1354(02)00571-7
    [22]
    张涛, 赵永红, 成先雄. EDTA改性沸石吸附去除低浓度氨氮的实验研究[J]. 应用化工, 2021, 50(4): 911-914.
    [23]
    生态环境部, 国家环境保护局. 渔业水质标准: GB 11607—1989[S]. 北京: 中国标准出版社, 1990.
    [24]
    杨长志, 韩广源, 姜冰, 等. UPLC-MS-MS法测定八宝粥罐头中乙二胺四乙酸二钠残留量[J]. 食品科学, 2015, 36(4): 208-212.
    [25]
    MOUSAVI H, DARIAN J T, MOKHTARANI B. Enhanced nitrogen adsorption capacity on Ca2+ ion-exchanged hierarchical X zeolite[J]. Separation and Purification Technology, 2021, 264: 118442. doi: 10.1016/j.seppur.2021.118442
  • Related Articles

    [1]LONG Hangyu, TAO Jiameng, JIANG Yajie, LI Xiaobin, ZOU Jiaru, WENG Yabiao, LIN Ruiqing. Expression of phage lysin Cp51 in recombinant Lactococcus lactis and its antibacterial activity against Clostridium perfringens type A[J]. Journal of South China Agricultural University, 2020, 41(1): 42-47. DOI: 10.7671/j.issn.1001-411X.201903003
    [2]XU Zheng, MA Xiaoli, LIN Yanxing, DONG Jianguo, WANG Lei, LIU Yanling, LIU Qingshen, SONG Changxu. Expression and immunogenicity of recombinant capsid protein of porcine circovirus type 2 in insect cells[J]. Journal of South China Agricultural University, 2018, 39(3): 1-5. DOI: 10.7671/j.issn.1001-411X.2018.03.001
    [3]ZHANG Xiaoxi, LI Lanyu, LIU Qingyou, ZHENG Haixue, LI Xiangping, CUI Kuiqing, SHI Deshun. Construction of lentivirus-mediated multi-shRNAs vector and evaluation of anti-FMDV in vitro and vivo[J]. Journal of South China Agricultural University, 2014, 35(4): 1-6. DOI: 10.7671/j.issn.1001-411X.2014.04.001
    [4]ZHANG Chunlei, JIN Liming, YE Yu, ZHANG Jie, ZHU Jun, GAO Youwen, LIAO Ming, FAN Huiying. Construction of a Recombinant Baculovirus Secreted Expression Vector in Cap Protein of Porcine Circovirus Type 2[J]. Journal of South China Agricultural University, 2013, 34(4): 564-568. DOI: 10.7671/j.issn.1001-411X.2013.04.021
    [5]CHENG Xiao-liang, LIN Wen-yao, YE Yu, CHEN Xiao-wei, YAN Chang-yan, LIAO Ming, FAN Hui-ying. Construction of Recombinant Baculovirus Surface-Displayed the Capsid Protein of Porcine Circovirus Type 2[J]. Journal of South China Agricultural University, 2011, 32(4): 96-100. DOI: 10.7671/j.issn.1001-411X.2011.04.021
    [6]Electrophoretic Characterization of PCV2 Rep Proteins Expressed by Different Expression Systems[J]. Journal of South China Agricultural University, 2010, 31(4). DOI: 10.7671/j.issn.1001-411X.2010.04.026
    [7]LIU Jie-zhu,BI Ying-zuo,XUE Chun-yi,CAO Yong-chang. Preparation of the Recombinant Fusion Protein of Cholecystokinin and Its Immunogenicity[J]. Journal of South China Agricultural University, 2008, 29(4). DOI: 10.7671/j.issn.1001-411X.2008.04.014
    [8]JU Chun-mei,FAN Hui-ying,LIU Zheng-fei,CHEN Huan-chun. Biological Characteristics of Recombinant Pseudorabies Virus Expressing ORF2 Protein of Porcine Circovirus Type 2[J]. Journal of South China Agricultural University, 2007, 28(3): 97-100. DOI: 10.7671/j.issn.1001-411X.2007.03.022
    [9]TIAN Xing-shan~,ZHANG Ling-hua~. Construction of recombinant Lactobacillus expressing green fluorescent protein gene and transformation conditions by electroporation[J]. Journal of South China Agricultural University, 2005, 26(3): 117-119. DOI: 10.7671/j.issn.1001-411X.2005.03.033
    [10]LUO Man-lin~1,BU Chun-ling~1,CHEN Pu-yan~2,XU Gang~3,LIU Zhen-ming~1. The Construction and Expression of PRV PK/gG/GFP Recombinant Transfer Vector[J]. Journal of South China Agricultural University, 2003, 24(4): 64-66,F003. DOI: 10.7671/j.issn.1001-411X.2003.04.018
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (134) PDF downloads (54) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return