Citation: | YUAN Ziwei, HE Danyu, TANG Mengtian, et al. Effects of biochar amendment with phosphorus fertilizer on organic phosphorus transformation and soybean phosphorus uptake in red soil[J]. Journal of South China Agricultural University, 2025, 46(1): 53-61. DOI: 10.7671/j.issn.1001-411X.202402017 |
To investigate the effect of biochar addition at different phosphorus (P) levels on P transformation and crop P uptake in red soil, as well as the underlying processes and mechanisms, and provide a scientific basis for the application of biochar in reducing P input and increasing efficiency, as well as promoting soybean P uptake.
An acidic red soil was used as the test soil to explore the effects of 4%(w) rice straw biochar under four phosphate fertilizer levels (0, 30, 60 and 90 kg·hm−2) on contents of soil components, phosphatase activity, microbial biomass P content and soybean P uptake and their correlations.
P level, biochar and their interaction had significantl effects on soybean P absorption, soil P composition and turnover. The biochar addition promoted soybean P uptake and P use efficiency, with a more significant effect at 30 kg·hm−2 P treatment. Biochar application at different P levels increased soil inorganic P content, especially the NH4F-Pi, HCl-Pi. Without phosphate fertilizer, adding biochar reduced NaOH-extractable organic P by 48.5%. Furthermore, adding biochar with 0 and 30 kg·hm−2 P treatment increased soil alkaline phosphatase activity by 71.7% and 46.0% respectively, and soil microbial biomass P content by 458.3% and 84.0% respectively.
Biochar addition under low P conditions significantly promotes plant P uptake and P use efficiency, while also enhancing the biological transformation of soil labile organic P.
[1] |
刘佳, 陈晓芬, 刘明, 等. 长期施肥对旱地红壤细菌群落的影响[J]. 土壤学报, 2020, 57(2): 468-478. doi: 10.11766/trxb201810090507
|
[2] |
王蕾, 王艳玲, 李欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021(1): 17-25. doi: 10.11838/sfsc.1673-6257.19549
|
[3] |
张宝贵, 李贵桐. 土壤生物在土壤磷有效化中的作用[J]. 土壤学报, 1998(1): 104-111. doi: 10.11766/trxb199508270115
|
[4] |
李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012, 31(11): 2277-2283.
|
[5] |
ZHANG L, WU Z, ZHOU J, et al. Meta-analysis of the response of the productivity of different crops to parameters and processes in soil nitrogen cycle under biochar addition[J]. Agronomy, 2022, 12(8): 1857. doi: 10.3390/agronomy12081857
|
[6] |
SIGUA G C, NOVAK J M, WATTS D W, et al. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer[J]. Chemosphere, 2016, 142: 176-183. doi: 10.1016/j.chemosphere.2015.06.015
|
[7] |
刘玉学, 唐旭, 杨生茂, 等. 生物炭对土壤磷素转化的影响及其机理研究进展[J]. 植物营养与肥料学报, 2016, 22(6): 1690-1695. doi: 10.11674/zwyf.14585
|
[8] |
才吉卓玛. 生物炭对不同类型土壤中磷有效性的影响研究[D]. 北京: 中国农业科学院, 2013.
|
[9] |
GUL S, WHALEN J K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils[J]. Soil Biology and Biochemistry, 2016, 103: 1-15. doi: 10.1016/j.soilbio.2016.08.001
|
[10] |
XU G, SUN J, SHAO H, et al. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity[J]. Ecological Engineering, 2014, 62: 54-60. doi: 10.1016/j.ecoleng.2013.10.027
|
[11] |
张晓娜, 陈平, 庞婷, 等. 玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响[J]. 四川农业大学学报, 2017, 35(4): 484-490.
|
[12] |
任嘉宇. 大豆玉米带状复合种植技术[J]. 现代化农业, 2024(3): 14-17. doi: 10.3969/j.issn.1001-0254.2024.03.007
|
[13] |
SATTARI S Z, VAN ITTERSUN M K, GILLER K E, et al. Key role of China and its agriculture in global sustainable phosphorus management[J]. Environmental Research Letters, 2014, 9(5): 054003. doi: 10.1088/1748-9326/9/5/054003
|
[14] |
邓金环. 生物炭改良酸性土壤及提高大豆硅磷吸收转化的机理研究[D]. 广州: 华南农业大学, 2019.
|
[15] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
[16] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[17] |
KUO S. Phosphorus[M]//SPARKS D L. Methods of Soil Analysis. Madison, WI: Soil Science Society of America. 1996: 869-919.
|
[18] |
WEAVER R W, ANGLE J S, BOTTOMLEY P S. Methods of Soil Analysis[M]//Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America. 1994.
|
[19] |
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x
|
[20] |
TESFAYE F, LIU X, ZHENG J, et al. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments[J]. Environmental Science and Pollution Research, 2021, 28(26): 34108-34120. doi: 10.1007/s11356-021-14119-7
|
[21] |
张登晓, 高雅, 介红彬, 等. 生物质炭对农田土壤磷有效性的影响研究进展[J]. 河南农业大学学报, 2021, 55(2): 199-205.
|
[22] |
XU G, ZHANG Y, SUN J, et al. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil[J]. Science of the Total Environment, 2016, 568: 910-915. doi: 10.1016/j.scitotenv.2016.06.079
|
[23] |
武毅昶. 土壤调理剂对酸性土壤改良效果初探[D]. 呼和浩特: 内蒙古农业大学, 2017.
|
[24] |
LATATI M, BLAVET D, ALKAMA N, et al. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil[J]. Plant and Soil, 2014, 385(1): 181-191.
|
[25] |
ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537. doi: 10.1016/j.scitotenv.2017.08.095
|
[26] |
YANG C, LU S. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol[J]. Science of the Total Environment, 2022, 805: 150325. doi: 10.1016/j.scitotenv.2021.150325
|
[27] |
ZHANG H, CHEN C, GRAY E M, et al. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus[J]. Geoderma, 2016, 276: 1-6. doi: 10.1016/j.geoderma.2016.04.020
|
[28] |
JIANG J, YUAN M, XU R, et al. Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws[J]. Soil and Tillage Research, 2015, 146: 139-147. doi: 10.1016/j.still.2014.10.009
|
[29] |
DELUCA T H, GLANVILLE H C, HARRIS M, et al. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes[J]. Soil Biology and Biochemistry, 2015, 88: 110-119. doi: 10.1016/j.soilbio.2015.05.016
|
[30] |
RICHARDSON A E, SIMPSON R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989-996. doi: 10.1104/pp.111.175448
|
[31] |
NANNIPIERI P, GIAGNONI L, LANDI L, et al. Role of phosphatase enzymes in soil[M]//BÜNEMANN E, OBERSON A, FROSSARD E. Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 215-243.
|
[32] |
LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. doi: 10.1016/j.soilbio.2011.04.022
|
[33] |
和文祥, 朱铭莪, 张一平. 土壤酶与重金属关系的研究现状[J]. 土壤与环境, 2000, 9(2): 139-142.
|
[34] |
刘海旭, 吴俊江, 王金生, 等. 大豆耐低磷研究进展[J]. 大豆科学, 2017, 36(4): 639-644.
|
[35] |
WANG W, CHEN Y, ZHANG F, et al. Cotton-maize intercropping increases rhizosphere soil phosphorus bioavailability by regulating key phosphorus cycling genes in Northwest China[J]. Applied Soil Ecology, 2023, 182: 104734. doi: 10.1016/j.apsoil.2022.104734
|
[36] |
LUO G, SUN B, LI L, et al. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD-and phoC-harboring functional microbial populations[J]. Soil Biology and Biochemistry, 2019, 139: 107632. doi: 10.1016/j.soilbio.2019.107632
|
[37] |
易观文. 生物炭与磷肥配施对盐碱土磷素转化的影响及微生物学机制[D]. 上海: 华东师范大学, 2023.
|
[38] |
LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. The ISME Journal, 2020, 14(6): 1600-1613. doi: 10.1038/s41396-020-0632-4
|
[39] |
HAN B, LI J, LIU K, et al. Variations in soil properties rather than functional gene abundances dominate soil phosphorus dynamics under short-term nitrogen input[J]. Plant and Soil, 2021, 469(1): 227-241.
|
[40] |
SILES J A, STARKE R, MARTINOVIC T, et al. Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining[J]. Soil Biology and Biochemistry, 2022, 174: 108826. doi: 10.1016/j.soilbio.2022.108826
|
[41] |
ZHOU L L, CAO J, ZHANG F S, et al. Rhizosphere acidification of faba bean, soybean and maize[J]. Science of the Total Environment, 2009, 407(14): 4356-4362. doi: 10.1016/j.scitotenv.2009.02.006
|
[1] | WANG Wenjuan, LI Zhibo, LIN Chenyu, CAO Yingjie, LI Jianjun, GUO Xin, ZOU Liangping, LI Wenbin, ZHAO Pingjuan, YU Xiaoling, ZHANG Xiuchun, LI Shuxia, YU Xiaohui, RUAN Mengbin. Functional analysis of SAP11 gene in cassava[J]. Journal of South China Agricultural University, 2024, 45(4): 495-504. DOI: 10.7671/j.issn.1001-411X.202310017 |
[2] | LIU Huili, GUO Ziming, CHENG Tairan, ZHANG Zhicheng. Functional analysis of OsRAC3 regulating seed traits in rice[J]. Journal of South China Agricultural University, 2023, 44(5): 690-695. DOI: 10.7671/j.issn.1001-411X.202304033 |
[3] | SUN Yanmei, SUN Jingshuai, QIN Jiali, YUAN Renqiang, ZHU Xiaoping, ZHAO Yunxiang. Characterization, identification and functional analysis of miRNA in seminal plasma exosomes of Yorkshire boar[J]. Journal of South China Agricultural University, 2023, 44(3): 340-347. DOI: 10.7671/j.issn.1001-411X.202205004 |
[4] | ZHANG Juan, HU Honghong, DENG Zhanzhao, MU Tong, GU Yaling, XIN Guosheng. Sequence analysis of AK1 gene from Jingyuan chicken and construction of its eukaryotic expression vector[J]. Journal of South China Agricultural University, 2021, 42(2): 17-25. DOI: 10.7671/j.issn.1001-411X.202006037 |
[5] | WU Wei, WANG Zuowei, SU Yongying, GAN Shuang, DU Shiping, CAI Yi, GUO Jinya. Analysis of subcellular localization signals of Arabidopsis cytokinin receptor protein AHK3[J]. Journal of South China Agricultural University, 2017, 38(6): 64-71. DOI: 10.7671/j.issn.1001-411X.2017.06.010 |
[6] | CHEN Zhanyu, WANG Kuo, WANG Xiaomei, LIU Xiangguo, CUI Xiyan. Cloning and function analysis of starch synthase SSⅡa promoter in maize[J]. Journal of South China Agricultural University, 2017, 38(1): 15-22. DOI: 10.7671/j.issn.1001-411X.2017.01.004 |
[7] | FENG Faqiang, WANG Guohua, WANG Qingfeng, YANG Ruichun, LI Xiaoqin. Functional analysis of the key carotenoid biosynthetic genes PSY1, LCYE and CrtRB1 in sweet corn[J]. Journal of South China Agricultural University, 2015, 36(5): 36-42. DOI: 10.7671/j.issn.1001-411X.2015.05.007 |
[8] | FENG Faqiang, ZHANG Jing, WANG Qingfeng, YANG Ruichun, WANG Guohua, LI Xiaoqin. Identification of polymorphism and function of LCYE allele in sweet corns[J]. Journal of South China Agricultural University, 2014, 35(5): 25-30. DOI: 10.7671/j.issn.1001-411X.2014.05.005 |
[9] | YANG Li-ping, TAN Xiu-ming, ZHOU Jia-nuan, LIU Qiong-guang. Knock-Out and Functional Analysis of Hamp Domain of ExpS in Dickeya zeae[J]. Journal of South China Agricultural University, 2011, 32(3): 48-52. DOI: 10.7671/j.issn.1001-411X.2011.03.011 |
[10] | SU Zhen-xia, OU Guang-liang, LI Yi-heng, MU Hong. Analysis of Expression Profile of OsUgp1 Gene by Promoter-GUS Chimeric Expression[J]. Journal of South China Agricultural University, 2011, 32(2): 57-61. DOI: 10.7671/j.issn.1001-411X.2011.02.014 |
1. |
罗锡文,谷秀艳,胡炼,赵润茂,岳孟东,何杰,黄培奎,汪沛. 大田无人化智慧农场农田边界识别技术研究现状与展望. 农业机械学报. 2025(02): 1-18 .
![]() | |
2. |
冯国练. 无人驾驶农机路径跟踪控制方法探索研究. 现代农机. 2025(02): 68-70 .
![]() | |
3. |
寇浩,曲双为. 基于AHP-FCE的花椒采摘机器人设计. 工业设计. 2024(06): 146-150 .
![]() |