• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHAO Gaoyuan, ZHANG Yali, ZHANG Zichao, et al. Monitoring rice bacterial blight based on UAV images of different ground sampling distances (GSD)[J]. Journal of South China Agricultural University, 2025, 46(1): 115-123. DOI: 10.7671/j.issn.1001-411X.202401003
Citation: ZHAO Gaoyuan, ZHANG Yali, ZHANG Zichao, et al. Monitoring rice bacterial blight based on UAV images of different ground sampling distances (GSD)[J]. Journal of South China Agricultural University, 2025, 46(1): 115-123. DOI: 10.7671/j.issn.1001-411X.202401003

Monitoring rice bacterial blight based on UAV images of different ground sampling distances (GSD)

More Information
  • Received Date: January 01, 2024
  • Available Online: December 08, 2024
  • Published Date: December 12, 2024
  • Objective 

    In order to monitor rice bacterial blight quickly and non-destructively, and guide field operations.

    Method 

    High-resolution images of rice canopy under bacterial blight stress were acquired using utilized unmanned aerial vehicles (UAVs). Color features and texture features were extracted from the images, and multiple regression models based on color features, texture features, and the fusion of color and texture features were constructed to predict the infection level of rice bacterial blight. The influence of different ground sampling distances (GSD) on the accuracy of the models was also explored.

    Result 

    The determination coefficient (R2) of the monitoring model based on color features was 85.9%, root mean square error (RMSE) was 1.43 and relative RMSE (RRMSE) was 19.1%. The R2 had increased by 2.4 percentage points and RRMSE had increased by 4.6 percentage points compared with the model based on texture features. Compared with single-feature models, the prediction model based on the fusion of color and texture features (R2=89.6%, RMSE=1.06, RRMSE=15.1%) exhibited significant improvement in accuracy. By constructing models with different GSDs, it was found that when the GSD was 0.2, 0.5 or 0.8 cm, the models achieved higher accuracy with R2 all above 80%.

    Conclusion 

    The color and texture features extracted from low-altitude remote sensing images captured by UAVs can be used for monitoring rice bacterial blight. The results can provide effective technical support for UAV remote sensing monitoring of rice bacterial blight.

  • [1]
    RAJARAJESWARI N V L, MURALIDHARAN K. Assessments of farm yield and district production loss from bacterial leaf blight epidemics in rice[J]. Crop Protection, 2006, 25(3): 244-252. doi: 10.1016/j.cropro.2005.04.013
    [2]
    伍尚忠. 水稻白叶枯病及其防治[M]. 上海: 上海科学技术出版社, 1983.
    [3]
    中国农业科学院植物保护研究所. 中国农作物病虫害(上册)[M]. 北京: 中国农业出版社, 1995.
    [4]
    杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190. doi: 10.11975/j.issn.1002-6819.2015.21.024
    [5]
    张智韬, 边江, 韩文霆, 等. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫[J]. 农业工程学报, 2018, 34(15): 77-84. doi: 10.11975/j.issn.1002-6819.2018.15.010
    [6]
    杨文攀, 李长春, 杨浩, 等. 基于无人机热红外与数码影像的玉米冠层温度监测[J]. 农业工程学报, 2018, 34(17): 68-75. doi: 10.11975/j.issn.1002-6819.2018.17.010
    [7]
    DEHKORDI R H, JARROUDI M E, KOUADIO L, et al. Monitoring wheat leaf rust and stripe rust in winter wheat using high-resolution UAV-based red-green-blue imagery[J]. Remote Sensing, 2020, 12(22): 3696. doi: 10.3390/rs12223696
    [8]
    王震, 褚桂坤, 张宏建, 等. 基于无人机可见光图像Haar-like特征的水稻病害白穂识别[J]. 农业工程学报, 2018, 34(20): 73-82. doi: 10.11975/j.issn.1002-6819.2018.20.010
    [9]
    WEI L L, LUO Y S, XU L Z, et al. Deep convolutional neural network for rice density prescription map at ripening stage using unmanned aerial vehicle-based remotely sensed images[J]. Remote Sensing, 2022, 14(1): 46.
    [10]
    DANG L M, WANG H X, LI Y F, et al. Fusarium wilt of radish detection using RGB and near infrared images from unmanned aerial vehicles[J]. Remote Sensing, 2020, 12(17): 2863. doi: 10.3390/rs12172863
    [11]
    ZHANG D, ZHOU X, ZHANG J, et al. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging[J]. PLoS One, 2018, 13(5): e0187470. doi: 10.1371/journal.pone.0187470.
    [12]
    LEE K D, KIM S M, AHN H Y, et al. Yearly estimation of rice growth and bacterial leaf blight inoculation effect using UAV imagery[J]. Journal of the Korean Society of Agricultural Engineers, 2020, 62(4): 75-86.
    [13]
    赵晓阳, 张建, 张东彦, 等. 低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究[J]. 光谱学与光谱分析, 2019, 39(4): 1192-1198.
    [14]
    LIU T, SHI T Z, ZHANG H, et al. Detection of rise damage by leaf folder (Cnaphalocrocis medinalis) Using unmanned aerial vehicle based hyperspectral data[J]. Sustainability, 2020, 12(22): 9343. doi: 10.3390/su12229343
    [15]
    WANG T Y, THOMASSON J A, ISAKEIT T, et al. A plant-by-plant pethod to pdentify and treat cotton root rot based on UAV remote sensing[J]. Remote Sensing, 2020, 12(15): 2453. doi: 10.3390/rs12152453
    [16]
    SU J Y, LIU C J, HU X P, et al. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery[J]. Computers and Electronics in Agriculture, 2019, 167: 105035. doi: 10.1016/j.compag.2019.105035.
    [17]
    万亮, 岑海燕, 朱姜蓬, 等. 基于纹理特征与植被指数融合的水稻含水量无人机遥感监测[J]. 智慧农业, 2020, 2(1): 58-67. doi: 10.12133/j.smartag.2020.2.1.201911-SA002
    [18]
    WANG C W, CHEN Y C, XIAO Z P, et al. Cotton blight identification with ground framed canopy photo-assisted multispectral UAV images[J]. Agronomy, 2023, 13(5): 1222. doi: 10.3390/agronomy13051222
    [19]
    DAMMER K H, GARZ A, HOBART M, et al. Combined UAV-and tractor-based stripe rust monitoring in winter wheat under field conditions[J]. Agronomy Journal, 2022, 114(1): 651-661. doi: 10.1002/agj2.20916
    [20]
    XAVIER T W F, SOUTO R N V, STATELLA T, et al. Identification of Ramularia leaf blight cotton disease infection levels by multispectral, multiscale UAV imagery[J]. Drones, 2019, 3(2): 33. doi: 10.3390/drones3020033
    [21]
    BHANDARI M, IBRAHIM A M H, XUE Q W, et al. Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV)[J]. Computers and Electronics in Agriculture, 2020, 176: 105665. doi: 10.1016/j.compag.2020.105665.
    [22]
    ZHANG T X, YANG Z F, XU Z Y, et al. Wheat yellow rust severity detection by efficient DF-UNet and UAV multispectral imagery[J]. IEEE Sensors Journal, 2022, 22(9): 9057-9068. doi: 10.1109/JSEN.2022.3156097
    [23]
    HARSHADKUMAR B P, JITESH P S, VIPUL K D. Detection and classification of rice plant diseases[J]. Intelligent Decision Technologies, 2018, 11(3): 357-373.
    [24]
    XU W J, KESHMIRI S, WANG G. Adversarially approximated autoencoder for image generation and manipulation[J]. IEEE Transactions on Multimedia, 2019, 21(9): 2387-2396. doi: 10.1109/TMM.2019.2898777
    [25]
    GÖRGEL P, SIMSEK A. Face recognition via deep stacked denoising sparse autoencoders (DSDSA)[J]. Applied Mathematics and Computation, 2019, 355: 325-342. doi: 10.1016/j.amc.2019.02.071
  • Cited by

    Periodical cited type(7)

    1. 陈芬,余高,王谢丰,李廷亮,孙约兵. 土壤真菌群落结构对辣椒长期连作的响应特征. 环境科学. 2024(01): 543-554 .
    2. 吴媛,肖井雷,姜大成,王英哲,白洋,闫莉. 基于高通量测序技术的朝鲜淫羊藿内生真菌多样性分析. 分子植物育种. 2024(16): 5452-5458 .
    3. 蔡丽琼,陈瑞,杨德强,赵长林. 云南省彝良县天麻连作根际土壤细菌群落分析. 中国农学通报. 2023(19): 80-87 .
    4. 徐雷,刘常丽,郭兰萍. 不同种植模式下茯苓土壤细菌多样性和功能预测分析. 北方园艺. 2023(11): 91-97 .
    5. 高正睿,臧广鹏,宿翠翠,王振龙,施志国,龚永福,魏玉杰. 药用植物连作障碍的形成机制及其缓解措施研究进展. 安徽农业科学. 2023(12): 21-25+29 .
    6. 熊冰杰,何舒,张澳,黄佑国,王美玲,严星茹,何霞红,施蕊. 基于高通量测序技术的林下三七土壤微生物多样性研究. 山东农业科学. 2023(08): 80-87 .
    7. 蔡丽琼,陈瑞,杨德强,赵长林. 基于高通量测序的天麻连作根际土壤真菌群落多样性分析. 中国麻业科学. 2022(06): 321-330 .

    Other cited types(9)

Catalog

    Article views (536) PDF downloads (39) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return