• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LUO Jiaxin, DENG Jinhuan, TIAN Jihui, et al. Effects of biochar addition on transformation, availability and soybean plant uptake of silicon and phosphorus in red soil[J]. Journal of South China Agricultural University, 2025, 46(2): 141-150. DOI: 10.7671/j.issn.1001-411X.202401001
Citation: LUO Jiaxin, DENG Jinhuan, TIAN Jihui, et al. Effects of biochar addition on transformation, availability and soybean plant uptake of silicon and phosphorus in red soil[J]. Journal of South China Agricultural University, 2025, 46(2): 141-150. DOI: 10.7671/j.issn.1001-411X.202401001

Effects of biochar addition on transformation, availability and soybean plant uptake of silicon and phosphorus in red soil

More Information
  • Received Date: January 01, 2024
  • Available Online: December 12, 2024
  • Published Date: December 18, 2024
  • Objective 

    A large number of studies have confirmed that biochar can improve soil fertility, increase nutrient availability and promote crop growth. Given the low levels of silicon (Si) and phosphorus (P) elements in red soil in southern China, it is imperative to investigate the impacts of biochar addition on chemical speciation and plant uptake of Si and P.

    Method 

    Using Si-rich rice straw and husk biochar as test materials, the impacts of adding different doses (0, 1%, 2%, 4%) of biochar on the transformation and availability of Si and P in red soil, as well as nutrient uptake in soybean plants were studied.

    Result 

    Different types and dosages of biochar significantly reduced exchangeable acid content in soil, while increased soil pH and C/N, effective cation exchange capacity and base saturation. The greater the amount of biochar added, the more significant the increase. Straw biochar was significantly more effective than husk biochar. Compared with control, the contents of soil available Si and labile P fraction NaHCO3-Po in biochar treatments increased by 4.1%−85.0% and 175.2%−2139.6%, respectively. Biochar application significantly increased dry matter accumulation in soybean plant, improved root morphological characteristics, increased Si concentration of soybean roots and leaves, promoted the uptake and transport of Si and P by roots, and the effect of straw biochar was more significant.

    Conclusion 

    The application of rice straw and husk biochar significantly affects the form and transformation of P and Si in acid soil, increases their availability, absorption and utilization by plants. Straw biochar shows better effect.

  • [1]
    周新安, 年海, 杨文钰, 等. 南方间套作大豆生产发展的现状与对策(I)[J]. 大豆科技, 2010(3): 1-2. doi: 10.3969/j.issn.1674-3547.2010.03.001
    [2]
    张小明, 曾宪楠, 孙羽. 磷素对大豆生长发育影响的研究进展[J]. 大豆科学, 2016, 35(1): 176-180. doi: 10.11861/j.issn.1000-9841.2016.01.0176
    [3]
    董伟萍. 不同基因型大豆品种生理及产量性状对氮、磷及钾缺失的响应[D]. 长春: 吉林农业大学, 2023.
    [4]
    邓伟明, 唐梦天, 郭玉栋, 等. 生物炭与磷肥添加对红壤团聚体及其磷组分分布的影响[J]. 土壤通报, 2023, 54(2): 352-363.
    [5]
    王蕾, 王艳玲, 李欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021, 291(1): 17-25. doi: 10.11838/sfsc.1673-6257.19549
    [6]
    苏素苗, 杨春雷, 饶雄飞, 等. 硅对植物抗逆性影响的研究进展[J]. 华中农业大学学报, 2022, 41(6): 160-168. doi: 10.3969/j.issn.1000-2421.2022.6.hznydx202206018
    [7]
    王莹. 硅缓解大豆幼苗铝毒害的作用机制研究[D]. 新乡: 河南师范大学, 2022.
    [8]
    许基磊. 三种外源添加剂对野大豆盐胁迫损伤的缓解效应及机理研究[D]. 扬州: 扬州大学, 2020.
    [9]
    邝曦芝, 邓伟明, 唐乐乐, 等. 不同磷水平配施生物炭对土壤磷有效性和大豆磷吸收的影响[J]. 应用生态学报, 2022, 33(7): 1911-1918.
    [10]
    ENDERS A, HANLEY K, WHITMAN T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology, 2012, 114(1): 644-653.
    [11]
    LEHMANN J, JOSEPH S. Biochar for environmental management: Science and technology[M]. London: Earthscan, 2009, 251-270.
    [12]
    马珍, 黄凯文, 张珍明, 等. 添加生物炭对土壤磷素有效性影响研究进展[J]. 东北农业大学学报, 2021, 52(8): 89-96. doi: 10.3969/j.issn.1005-9369.2021.08.010
    [13]
    张登晓, 高雅, 介红彬, 等. 生物质炭对农田土壤磷有效性的影响研究进展[J]. 河南农业大学学报, 2021, 55(2): 199-205.
    [14]
    占亚楠, 王智, 孟亚利. 生物炭提高土壤磷素有效性的整合分析[J]. 应用生态学报, 2020, 31(4): 1185-1193.
    [15]
    王耀锋. 生物炭对土壤−水稻体系中污染物和硅元素迁移行为的影响及污染阻控机制[D]. 杭州: 浙江大学, 2019.
    [16]
    邢宇. 稻壳稻秆生物炭制备白炭黑条件优化与性能分析[D]. 哈尔滨: 东北农业大学, 2022.
    [17]
    胡祖武, 吴多基, 吴建富, 等. 富硅生物炭有效提高红壤性稻田土壤不同形态硅含量及水稻产量[J]. 植物营养与肥料学报, 2022, 28(8): 1421-1429. doi: 10.11674/zwyf.2022022
    [18]
    李仁英, 邱译萱, 刘春艳, 等. 硅对水稻土磷吸附−解吸行为的影响[J]. 土壤通报, 2013, 44(5): 1134-1139.
    [19]
    宋文涛, 田纪辉, 董宇豪, 等. 秸秆生物炭对水稻土和赤红壤磷素有效性及化学形态的影响[J]. 应用与环境生物学报, 2022, 28(6): 1422-1429.
    [20]
    戴伟民, 张克勤, 段彬伍, 等. 测定水稻硅含量的一种简易方法[J]. 中国水稻科学, 2005, 19(5): 460-462. doi: 10.3321/j.issn:1001-7216.2005.05.013
    [21]
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
    [22]
    刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996.
    [23]
    SONG Z L, WANG H L, STRONG P J, et al. Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development, 2014, 34(4): 813-819. doi: 10.1007/s13593-013-0202-5
    [24]
    CONDRON L M, CORNFORTH I S, DAVIS M R, et al. Influence of conifers on the forms of phosphorus in selected New Zealand grassland soils[J]. Biology and Fertility of Soils, 1996, 21(1): 37-42.
    [25]
    HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x
    [26]
    HE Z Q, HONEYCUTT C W. A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates[J]. Communications in Soil Science and Plant Analysis, 2005, 36(9/10): 1373-1383.
    [27]
    袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417. doi: 10.11674/zwyf.14539
    [28]
    BUSHRA B, REMYA N. Biochar from pyrolysis of rice husk biomass: Characteristics, modification and environmental application[J]. Biomass Conversion and Biorefinery, 2020, 14(5): 5759-5770.
    [29]
    ZHAO S X, TA N, WANG X D. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material[J]. Energies, 2017, 10(9): 1293. doi: 10.3390/en10091293
    [30]
    CHEN H M, MA J Y, WEI J X, et al. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates[J]. Science of the Total Environment, 2018, 635: 333-342. doi: 10.1016/j.scitotenv.2018.04.127
    [31]
    BLANCO-CANQUI H. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 2017, 81(4): 687-711. doi: 10.2136/sssaj2017.01.0017
    [32]
    LUO Y, DUNGAIT J A J, ZHAO X R, et al. Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil[J]. Land Degradation & Development, 2018, 29(7): 2183-2188.
    [33]
    WANG L, BUTTERLY C R, WANG Y, et al. Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils[J]. Soil Use and Management, 2014, 30(1): 119-128. doi: 10.1111/sum.12096
    [34]
    PENG X, YE L L, WANG C H, et al. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern China[J]. Soil and Tillage Research, 2011, 112(2): 159-166. doi: 10.1016/j.still.2011.01.002
    [35]
    EL-NAGGAR A, LEE S S, AWAD Y M, et al. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils[J]. Geoderma, 2018, 332: 100-108. doi: 10.1016/j.geoderma.2018.06.017
    [36]
    HOSSAIN M Z, BAHAR M M, SARKAR B, et al. Biochar and its importance on nutrient dynamics in soil and plant[J]. Biochar, 2020, 2: 379-420. doi: 10.1007/s42773-020-00065-z
    [37]
    XU M, WU J, YANG G, et al. Biochar addition to soil highly increases P retention and decreases the risk of phosphate contamination of waters[J]. Environmental Chemistry Letters, 2019, 17: 533-541. doi: 10.1007/s10311-018-0802-z
    [38]
    SHI Y X X, YU Y C, CHANG E, et al. Effect of biochar incorporation on phosphorus supplementation and availability in soil: A review[J]. Journal of Soils and Sediments, 2023, 23: 672-686. doi: 10.1007/s11368-022-03359-w
    [39]
    白玉超, 朱婧, 王宗抗, 等. 利用稻壳炭提高复合肥料在土壤中的磷素有效性[J]. 植物营养与肥料学报, 2022, 28(4): 664-674. doi: 10.11674/zwyf.2021335
    [40]
    XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J]. Environmental Science and Technology, 2014, 48(6): 3411-3419. doi: 10.1021/es405676h
    [41]
    姚冬辉. 有机物料还田对土壤硅形态及水稻硅吸收的影响研究[D]. 南昌: 江西农业大学, 2023.
    [42]
    邓杰, 王文慧, 赵启慧, 等. 生物质炭施用量对大豆生长及产量的影响[J]. 大豆科学, 2023, 42(2): 228-234.
    [43]
    王文慧, 蒋志慧, 张纪, 等. 生物炭对大豆根际土壤酶活性及产量的影响[J]. 中国土壤与肥料, 2023(6): 147-153. doi: 10.11838/sfsc.1673-6257.22001
    [44]
    侯伟男, 刘靖谕, 邢一唱, 等. 生物炭施入量对大豆生长发育及产量的影响[J]. 中国农学通报, 2021, 37(15): 14-19. doi: 10.11924/j.issn.1000-6850.casb2020-0374
    [45]
    邓金环. 生物炭改良酸性土壤及提高大豆硅磷吸收转化的机理研究[D]. 广州: 华南农业大学, 2019.
    [46]
    张彦丽. 不同磷效率大豆基因型根形态构型对低磷胁迫的响应[J]. 中国农学通报, 2010, 26(14): 182-185.
    [47]
    胡克伟, 肇雪松, 关连珠, 等. 水稻土中硅磷元素的存在形态及其相互影响研究[J]. 土壤通报, 2002, 33(4): 272-274. doi: 10.3321/j.issn:0564-3945.2002.04.008
    [48]
    SILVA J A. Possible mechanisms for crop response to silicate applications[J]. International Symposium on Soil Fertility Evaluation, 1971: 805-814.
    [49]
    ROY A C, ALI M Y, FOX R L, et al. Influence of calcium silicate on phosphate solubility and availability in Hawaiian latosols[J]. International Symposium on Soil Fertility Evaluation, 1971, 1: 757-767.
    [50]
    MA J F, TAKAHASHI E. Effect of silicate on phosphate availability for rice in a P-deficient soil[J]. Plant and Soil, 1991, 133(2): 151-155. doi: 10.1007/BF00009187
    [51]
    胡克伟, 颜丽, 关连珠. 土壤硅磷元素交互作用研究进展[J]. 土壤通报, 2004, 35(2): 230-233. doi: 10.3321/j.issn:0564-3945.2004.02.030

Catalog

    Article views (96) PDF downloads (55) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return