• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHAO Zhe, LUO Zengtong, PU Na, et al. Screening and identification of rice salt-tolerant mutants at germination stage induced by space mutagenesis and heavy ion radiation[J]. Journal of South China Agricultural University, 2025, 46(1): 25-33. DOI: 10.7671/j.issn.1001-411X.202310034
Citation: ZHAO Zhe, LUO Zengtong, PU Na, et al. Screening and identification of rice salt-tolerant mutants at germination stage induced by space mutagenesis and heavy ion radiation[J]. Journal of South China Agricultural University, 2025, 46(1): 25-33. DOI: 10.7671/j.issn.1001-411X.202310034

Screening and identification of rice salt-tolerant mutants at germination stage induced by space mutagenesis and heavy ion radiation

More Information
  • Received Date: October 26, 2023
  • Available Online: August 19, 2024
  • Published Date: August 25, 2024
  • Objective 

    To screen salt-tolerant mutants during germination, provide excellent germplasm resources for creating and breeding new salt-tolerant rice varieties.

    Method 

    The dried seeds of the high quality indica rice variety ‘Hangjuxiangsimiao’, were treated with spatial mutagenesis and heavy ion mutagenesis, and the mutagenised progeny were subjected to targeted screening for salt-tolerant mutants. Wild type (WT) ‘Hangjuxiangsimiao’ seeds were treated with different concentrations of NaCl solution to explore the appropriate concentration for screening salt-tolerant mutants at the germination stage, and then 5 205 M2 mutant materials were screened using germination rate as an index and verified in the M3 generation. WT and mutants were measured and analysed for salt-tolerance-related physiological indices and agronomic traits. 48 SSR markers were used to assess the genetic similarity between the mutant progeny and WT.

    Result 

    The appropriate NaCl concentration for screening salt-tolerant mutants at the germination stage was 340 mmol/L, and 12 salt-tolerant mutants were screened at the germination stage. The results of physiological indices showed that the SOD, POD, CAT and APX activities of two representative mutants 9-8 and 22-7 were significantly higher than those of WT, and the MDA, H2O2 and O2− contents were significantly lower, the salt-tolerant mutants exhibited stronger antioxidant capacity. The results of SSR marker detection showed that there were no SSR differentiation locus between WT seedlings and mutants of 19-49, 20-15, 20-49, 20-62, 15-6, 16-65, 22-7, 20-19 and 20-38, and one differentiation SSR locus between them and mutants of 9-8, 19-18, 42-113.

    Conclusion 

    Twelve salt-tolerant mutants were screened at the germination stage, which were highly consistent with the genetic background of wild-type ‘Hangjuxiangsimiao’. It has certain theoretical and practical significance for breeding new salt-tolerant rice varieties and studing the genetic mechanism of salt tolerance.

  • [1]
    杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
    [2]
    PONCE K, GUO L, LENG Y, et al. Advances in sensing, response and regulation mechanism of salt tolerance in rice[J]. International Journal of Molecular Sciences, 2021, 22(5): 2254. doi: 10.3390/ijms22052254
    [3]
    CHENG X, HE Q, TANG S, et al. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops[J]. New Phytologist, 2021, 230(3): 1017-1033. doi: 10.1111/nph.17211
    [4]
    YOU J, ZONG W, HU H, et al. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein Phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice[J]. Plant Physiology, 2014, 166(4): 2100-2114. doi: 10.1104/pp.114.251116
    [5]
    ZHANG J, FLOWERS T J, WANG S. Mechanisms of sodium uptake by roots of higher plants[J]. Plant and Soil, 2010, 326(1): 45-60.
    [6]
    黄洁, 白志刚, 钟楚, 等. 水稻耐盐生理及分子调节机制[J]. 核农学报, 2020, 34(6): 1359-1367. doi: 10.11869/j.issn.100-8551.2020.06.1359
    [7]
    曲梦宇, 许惠滨, 陈静, 等. 水稻耐盐分子机制与分子改良[J]. 植物遗传资源学报, 2022, 23(3): 644-653.
    [8]
    姚栋萍, 吴俊, 胡忠孝, 等. 水稻耐盐碱的生理机制及育种策略[J]. 杂交水稻, 2019, 34(4): 1-7.
    [9]
    CYRANOSKI D. Satellite will probe mutating seeds in space[J]. Nature, 2001, 410(6831): 857-858.
    [10]
    陈淳, 严贤诚, 罗文龙, 等. 水稻空间诱变与重离子诱变生物学效应及突变体定向筛选[J]. 华南农业大学学报, 2021, 42(1): 49-60. doi: 10.7671/j.issn.1001-411X.202004012
    [11]
    俞法明, 严文潮, 毛雪琴, 等. 利用空间诱变技术进行早籼稻新品种的改良[J]. 核农学报, 2014, 28(6): 949-954. doi: 10.11869/j.issn.100-8551.2014.06.0949
    [12]
    王伟荣, 孙超才, 蒋美艳, 等. 甘蓝型油菜品种航天诱变后代性状分析[J]. 核农学报, 2015, 29(2): 215-220. doi: 10.11869/j.issn.100-8551.2015.02.0215
    [13]
    刘录祥, 赵林姝, 郭会君. 作物航天育种研究现状与展望[J]. 中国农业科技导报, 2007, 9(2): 26-29. doi: 10.3969/j.issn.1008-0864.2007.02.005
    [14]
    陈志强, 郭涛, 刘永柱, 等. 水稻航天育种研究进展与展望[J]. 华南农业大学学报, 2009, 30(1): 1-5. doi: 10.3969/j.issn.1001-411X.2009.01.001
    [15]
    周利斌, 李文建, 曲颖, 等. 重离子束辐照育种研究进展及发展趋势[J]. 原子核物理评论, 2008, 25(2): 165-170. doi: 10.11804/NuclPhysRev.25.02.165
    [16]
    FU H, LI Y, SHU Q. A revisit of mutation induction by gamma rays in rice (Oryza sativa L. ): Implications of microsatellite markers for quality control[J]. Molecular Breeding, 2008, 22(2): 281-288. doi: 10.1007/s11032-008-9173-7
    [17]
    李瑞清, 武立权, 舒庆尧, 等. 一个新的水稻白化转绿突变体G9的特性研究[J]. 核农学报, 2010, 24(5): 881-886. doi: 10.11869/hnxb.2010.05.0881
    [18]
    曾晓珊, 彭丹, 石媛媛, 等. 利用SSR标记构建水稻核心亲本指纹图谱[J]. 作物研究, 2016, 30(5): 481-486.
    [19]
    许绍斌, 陶玉芬, 杨昭庆, 等. 简单快速的DNA银染和胶保存方法[J]. 遗传, 2002, 24(3): 335-336. doi: 10.3321/j.issn:0253-9772.2002.03.027
    [20]
    MANSOUR F M M, HASSAN F A. How salt stress-responsive proteins regulate plant adaptation to saline conditions?[J]. Plant Molecular Biology, 2022, 108(3): 175-224. doi: 10.1007/s11103-021-01232-x
    [21]
    ZHAO S, ZHANG Q, LIU M, et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9): 4609. doi: 10.3390/ijms22094609
    [22]
    CHOUDHURY F K, RIVERO R M, BLUMWALD E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5): 856-867. doi: 10.1111/tpj.13299
    [23]
    中国水稻研究所, 农业部科技发展中心. 水稻品种鉴定技术规程 SSR标记法: NY/T 1433—2014[S]. 北京: 中国农业出版社, 2014.
    [24]
    符德保, 李燕, 肖景华, 等. 中国水稻基因组学研究历史及现状[J]. 生命科学, 2016, 28(10): 1113-1121.
    [25]
    郑静. 一份水稻白化突变体的遗传分析及其基因定位[D]. 雅安: 四川农业大学, 2008.
    [26]
    魏溪涓. 水稻闭花授粉突变体fod的突变基因克隆与功能分析[D]. 金华: 浙江师范大学, 2015.
    [27]
    钟琪. 组织培养技术筛选植物耐盐突变体的研究进展[J]. 安徽农业科学, 2016, 44(5): 145-148. doi: 10.3969/j.issn.0517-6611.2016.05.053
    [28]
    颜佳倩, 顾逸彪, 薛张逸, 等. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
    [29]
    LIU J, FU C, LI G, et al. ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates[J]. Sustainability, 2021, 13(6): 3552. doi: 10.3390/su13063552
    [30]
    LIU C, MAO B, YUAN D, et al. Salt tolerance in rice: Physiological responses and molecular mechanisms[J]. The Crop Journal, 2022, 10(1): 13-25. doi: 10.1016/j.cj.2021.02.010
    [31]
    VAN ZELM E, ZHANG Y, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433. doi: 10.1146/annurev-arplant-050718-100005
    [32]
    FOYER C, NOCTOR G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses[J]. The Plant Cell, 2005, 17(7): 1866-1875. doi: 10.1105/tpc.105.033589
    [33]
    KHARE T, SRIVASTAVA A K, SUPRASANNA P, et al. Individual and additive stress impacts of Na+ and Cl on proline metabolism and nitrosative responses in rice[J]. Plant Physiology and Biochemistry, 2020, 152: 44-52. doi: 10.1016/j.plaphy.2020.04.028
    [34]
    温贤芳, 张龙, 戴维序, 等. 天地结合开展我国空间诱变育种研究[J]. 核农学报, 2004, 18(4): 241-246. doi: 10.3969/j.issn.1000-8551.2004.04.001
    [35]
    陈立凯, 黄明, 刘永柱, 等. 水稻开颖半不育突变体的观察、遗传分析和基因定位[J]. 中国农业科学, 2016, 49(1): 1-13. doi: 10.3864/j.issn.0578-1752.2016.01.001
    [36]
    CALDECOTT R S, STEVENS H, ROBERTS B J. Stem rust resistant variants in irradiated populations mutations or field hybrids? [J]. Agronomy Journal, 1959, 51(7): 401-403. doi: 10.2134/agronj1959.00021962005100070011x
    [37]
    张福彦, 张建伟, 程仲杰, 等. 航天诱变技术在小麦育种上的应用[J]. 核农学报, 2019, 33(2): 262-269. doi: 10.11869/j.issn.100-8551.2019.02.0262
  • Related Articles

    [1]WANG Wenjuan, LI Zhibo, LIN Chenyu, CAO Yingjie, LI Jianjun, GUO Xin, ZOU Liangping, LI Wenbin, ZHAO Pingjuan, YU Xiaoling, ZHANG Xiuchun, LI Shuxia, YU Xiaohui, RUAN Mengbin. Functional analysis of SAP11 gene in cassava[J]. Journal of South China Agricultural University, 2024, 45(4): 495-504. DOI: 10.7671/j.issn.1001-411X.202310017
    [2]LIU Huili, GUO Ziming, CHENG Tairan, ZHANG Zhicheng. Functional analysis of OsRAC3 regulating seed traits in rice[J]. Journal of South China Agricultural University, 2023, 44(5): 690-695. DOI: 10.7671/j.issn.1001-411X.202304033
    [3]SUN Yanmei, SUN Jingshuai, QIN Jiali, YUAN Renqiang, ZHU Xiaoping, ZHAO Yunxiang. Characterization, identification and functional analysis of miRNA in seminal plasma exosomes of Yorkshire boar[J]. Journal of South China Agricultural University, 2023, 44(3): 340-347. DOI: 10.7671/j.issn.1001-411X.202205004
    [4]ZHANG Juan, HU Honghong, DENG Zhanzhao, MU Tong, GU Yaling, XIN Guosheng. Sequence analysis of AK1 gene from Jingyuan chicken and construction of its eukaryotic expression vector[J]. Journal of South China Agricultural University, 2021, 42(2): 17-25. DOI: 10.7671/j.issn.1001-411X.202006037
    [5]WU Wei, WANG Zuowei, SU Yongying, GAN Shuang, DU Shiping, CAI Yi, GUO Jinya. Analysis of subcellular localization signals of Arabidopsis cytokinin receptor protein AHK3[J]. Journal of South China Agricultural University, 2017, 38(6): 64-71. DOI: 10.7671/j.issn.1001-411X.2017.06.010
    [6]CHEN Zhanyu, WANG Kuo, WANG Xiaomei, LIU Xiangguo, CUI Xiyan. Cloning and function analysis of starch synthase SSⅡa promoter in maize[J]. Journal of South China Agricultural University, 2017, 38(1): 15-22. DOI: 10.7671/j.issn.1001-411X.2017.01.004
    [7]FENG Faqiang, WANG Guohua, WANG Qingfeng, YANG Ruichun, LI Xiaoqin. Functional analysis of the key carotenoid biosynthetic genes PSY1, LCYE and CrtRB1 in sweet corn[J]. Journal of South China Agricultural University, 2015, 36(5): 36-42. DOI: 10.7671/j.issn.1001-411X.2015.05.007
    [8]FENG Faqiang, ZHANG Jing, WANG Qingfeng, YANG Ruichun, WANG Guohua, LI Xiaoqin. Identification of polymorphism and function of LCYE allele in sweet corns[J]. Journal of South China Agricultural University, 2014, 35(5): 25-30. DOI: 10.7671/j.issn.1001-411X.2014.05.005
    [9]YANG Li-ping, TAN Xiu-ming, ZHOU Jia-nuan, LIU Qiong-guang. Knock-Out and Functional Analysis of Hamp Domain of ExpS in Dickeya zeae[J]. Journal of South China Agricultural University, 2011, 32(3): 48-52. DOI: 10.7671/j.issn.1001-411X.2011.03.011
    [10]SU Zhen-xia, OU Guang-liang, LI Yi-heng, MU Hong. Analysis of Expression Profile of OsUgp1 Gene by Promoter-GUS Chimeric Expression[J]. Journal of South China Agricultural University, 2011, 32(2): 57-61. DOI: 10.7671/j.issn.1001-411X.2011.02.014
  • Cited by

    Periodical cited type(3)

    1. 罗锡文,谷秀艳,胡炼,赵润茂,岳孟东,何杰,黄培奎,汪沛. 大田无人化智慧农场农田边界识别技术研究现状与展望. 农业机械学报. 2025(02): 1-18 .
    2. 冯国练. 无人驾驶农机路径跟踪控制方法探索研究. 现代农机. 2025(02): 68-70 .
    3. 寇浩,曲双为. 基于AHP-FCE的花椒采摘机器人设计. 工业设计. 2024(06): 146-150 .

    Other cited types(1)

Catalog

    Article views (138) PDF downloads (56) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return