Citation: | WANG Fa’an, ZENG Yue, ZHANG Zhaoguo, et al. Parameter calibration of discrete element simulation model for Panax notoginseng planting soil[J]. Journal of South China Agricultural University, 2024, 45(4): 588-597. DOI: 10.7671/j.issn.1001-411X.202309042 |
To obtain the parameters of the discrete element simulation model for the interaction between Panax notoginseng planting soil and soil-engaging components.
This paper established a discrete element model of P. notoginseng planting soil based on the Hertz-Mindlin with JKR contact model, and calibrated parameters. Firstly, the JKR surface energy, restitution coefficient, static friction coefficient and rolling friction coefficient between soil particles and soil-65Mn steel plate were used as experiments factors, and the soil repose angle and the rolling distance of soil on the 65Mn plate were used as evaluation indexes. Secondly, the regression model for soil repose angle and rolling distance was established through the response surface optimization method based on Box-Behnken.
The regression model was optimized, and the optimal values of JKR surface energy, restitution coefficient, static friction coefficient and rolling friction coefficient between soil particles calibrated by simulation were 14.88 J/m2, 0.53, 0.46 and 0.150, respectively. The calibrated optimal values of JKR surface energy, restitution coefficient, static friction coefficient and rolling friction coefficient between soil-65Mn steel plate were 7.02 J/m2, 0.59, 0.57 and 0.058, respectively. Through the comparative analysis of the simulation test and the soil-bin test, the relative errors of the simulated and measured average resistance of the excavating shovel in the X and Y axis directions were 9.91% and 8.78%, respectively.
The calibrated discrete element soil model parameters have high accuracy, and the research can provide a theoretical reference for the optimization of the soil-engaging components and equipment of the P. notoginseng harvester.
[1] |
JIANG D L, LIU Y, LIN Z F, et al. Effects of combined infrared and hot-air drying on ginsenosides and drying characteristics of Panax notoginseng (Araliaceae) roots[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(1): 267-276. doi: 10.25165/j.ijabe.20221501.6210
|
[2] |
YANG K, YANG L, FAN W, et al. Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process[J]. Physiologia Plantarum, 2019, 167(4): 597-612. doi: 10.1111/ppl.12904
|
[3] |
邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006.
|
[4] |
邢洁洁, 张锐, 吴鹏, 等. 海南热区砖红壤颗粒离散元仿真模型参数标定[J]. 农业工程学报, 2020, 36(5): 158-166.
|
[5] |
郝建军, 魏文波, 黄鹏程, 等. 油葵籽粒离散元参数标定与试验验证[J]. 农业工程学报, 2021, 37(12): 36-44.
|
[6] |
WANG X W, MA H Z, LI B, et al, Review on the research of contact parameters calibration of particle system[J]. Journal of Mechanical Science and Technology, 2022, 36(3): 1363-1378.
|
[7] |
向伟, 吴明亮, 吕江南, 等. 基于堆积试验的黏壤土仿真物理参数标定[J]. 农业工程学报, 2019, 35(12): 116-123.
|
[8] |
李俊伟, 佟金, 胡斌, 等. 不同含水率黏重黑土与触土部件互作的离散元仿真参数标定[J]. 农业工程学报, 2019, 35(6): 130-140.
|
[9] |
王宪良, 钟晓康, 耿元乐, 等. 基于离散元非线性弹塑性接触模型的免耕土壤参数标定[J]. 农业工程学报, 2021, 37(23): 100-107.
|
[10] |
杨启志, 赫明胜, 施雷, 等. 分层防寒土与接触式清土机具相互作用的离散元仿真参数标定[J]. 江苏大学学报(自然科学版), 2023, 44(1): 52-61.
|
[11] |
宋占华, 李浩, 闫银发, 等. 桑园土壤非等径颗粒离散元仿真模型参数标定与试验[J]. 农业机械学报, 2022, 53(6): 21-33.
|
[12] |
石林榕. 西北旱区玉米直插穴播互作机理研究[D]. 兰州: 甘肃农业大学, 2022.
|
[13] |
游琪, 杨启良. 不同排水体对三七生长、土壤养分及根区土壤微生物的影响[J]. 排灌机械工程学报, 2022, 40(9): 959-965.
|
[14] |
锦州市环境监测中心站. 土壤 干物质和水分的测定 重量法: HJ 613—2011[S]. 北京: 中国环境科学出版社, 2011: 1-3.
|
[15] |
解开婷, 张兆国, 王法安, 等. 土壤与三七根茎黏附数学模型构建与验证[J]. 农业工程学报, 2022, 38(S1): 131-141.
|
[16] |
廖宜涛, 王在腾, 廖庆喜, 等. 果荚初期饲料油菜茎秆离散元接触模型参数标定[J]. 农业机械学报, 2020, 51(S1): 236-243.
|
[17] |
陈涛, 衣淑娟, 李衣菲, 等. 苜蓿现蕾期茎秆离散元模型建立与参数标定[J]. 农业机械学报, 2023, 54(5): 91-100.
|
[18] |
张锐, 韩佃雷, 吉巧丽, 等. 离散元模拟中沙土参数标定方法研究[J]. 农业机械学报, 2017, 48(3): 49-56.
|
[19] |
马帅, 徐丽明, 袁全春, 等. 葡萄藤防寒土与清土部件相互作用的离散元仿真参数标定[J]. 农业工程学报, 2020, 36(1): 40-49.
|
[20] |
张胜伟, 张瑞雨, 陈天佑, 等. 绿豆种子离散元仿真参数标定与排种试验[J]. 农业机械学报, 2022, 53(3): 71-79.
|
[21] |
SUN J F, CHEN H M, WANG Z M, et al. Study on plowing performance of EDEM low-resistance animal bionic device based on red soil[J]. Soil and Tillage Research, 2020, 196: 104336. doi: 10.1016/j.still.2019.104336
|
[22] |
王一驰. 基于离散元法的三七挖掘机理研究[D]. 昆明: 昆明理工大学, 2021.
|
[23] |
CUNHA R N, SANTOS K G, LIMA R N, et al. Repose angle of monoparticles and binary mixture: An experimental and simulation study[J]. Powder Technology, 2016, 303: 203-211. doi: 10.1016/j.powtec.2016.09.023
|
[24] |
MA W B, LIU J, CHENG Y R, et al. Study on mesoscopic adhesion characteristics of deep-sea sediment for self-cleaning mechanism of bionic grouser[J]. Applied Ocean Research, 2023, 131: 103451. doi: 10.1016/j.apor.2022.103451
|
[25] |
黄玉祥, 杭程光, 苑梦婵, 等. 深松土壤扰动行为的离散元仿真与试验[J]. 农业机械学报, 2016, 47(7): 80-88.
|
[26] |
杜小强, 宁晨, 杨振华, 等. 跨式油茶果收获机履带底盘行走液压系统设计与试验[J]. 农业机械学报, 2023, 54(3): 139-147.
|
[27] |
张兆国, 余小兰, 李汉青, 等. 温室三七收获机挖掘铲铲型对比研究[J]. 东北农业大学学报, 2020, 51(9): 79-88.
|
[28] |
于艳, 龚丽农, 尚书旗. 农机土槽试验动力学参数测试系统的研制[J]. 农业工程学报, 2011, 27(S1): 323-328.
|
1. |
宁晨,张建,张文福,吴纪元,杜小强,贾江鸣,童卫忠. 基于联合仿真的双臂瓣形铲移树机性能分析与试验. 农业机械学报. 2024(S2): 1-9 .
![]() | |
2. |
王法安,倪畅,张兆国,王博洋. 基于穿山甲前足的三七仿生挖掘铲设计与试验. 农业机械学报. 2024(S2): 10-19 .
![]() |