Citation: | XIE Jinyan, LIU Lixing, YANG Xin, et al. A path optimization algorithm for cooperative operation of multiple unmanned mowers in apple orchard[J]. Journal of South China Agricultural University, 2024, 45(4): 578-587. DOI: 10.7671/j.issn.1001-411X.202309010 |
To improve the work efficiency of cooperative operation of multiple unmanned lawn mowers in modern apple orchard.
An improved genetic algorithm (IGA) was proposed to assign and optimize the operating path for each mower. According to the actual operation of unmanned mowers, taking the total turning time and operation time as the comprehensive optimization goal, the optimization model for the operating path of multi-unmanned mower was constructed. In order to solve the model, the genetic algorithm (GA) was improved by setting task thresholds, introducing the improved circle algorithm and Metropolis criterion.
Simulation experiments results showed that the IGA balanced the workload assigned to each unmanned mower. Compared with GA, the path optimized by IGA resulted in an average reduction of 22.89% and 19.36% in the total turning time and operation time, respectively, in the rectangular orchard. Compared with the partition operation, the total turning time and operation time of the path optimized by IGA were reduced by an average of 45.53% and 10.68%, respectively, in the rectangular orchard. In the trapezoidal orchard, IGA was not affected by the distribution of fruit trees. Compared with GA and partition operation, the average value of total turning time reduced by 14.38% and 34.08%, respectively, while the average value of operation time reduced by 23.71% and 10.07%, respectively.
The proposed IGA performs better and can effectively optimize the operating paths of the fleet, reducing the operation duration and improving work capacity.
[1] |
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022.
|
[2] |
JU C, KIM J, SEOL J, et al. A review on multirobot systems in agriculture[J]. Computers and Electronics in Agriculture, 2022, 202: 107336. doi: 10.1016/j.compag.2022.107336
|
[3] |
李丽莉, 李保华, 仇贵生, 等. 矮化密植苹果园叶片病虫害调查取样技术[J]. 中国果树, 2022(6): 74-78.
|
[4] |
REN J, LI F, YIN C. Orchard grass safeguards sustainable development of fruit industry in China[J]. Journal of Cleaner Production, 2023, 382: 135291. doi: 10.1016/j.jclepro.2022.135291
|
[5] |
BOCHTIS D D, VOUGIOUKAS S G. Minimising the non-working distance travelled by machines operating in a headland field pattern[J]. Biosystems Engineering, 2008, 101(1): 1-12. doi: 10.1016/j.biosystemseng.2008.06.008
|
[6] |
张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18.
|
[7] |
BOCHTIS D, GRIEPENTROG H W, VOUGIOUKAS S, et al. Route planning for orchard operations[J]. Computers and Electronics in Agriculture, 2015, 113: 51-60. doi: 10.1016/j.compag.2014.12.024
|
[8] |
CONESA-MUÑOZ J, PAJARES G, RIBEIRO A. Mix-opt: A new route operator for optimal coverage path planning for a fleet in an agricultural environment[J]. Expert Systems with Applications, 2016, 54: 364-378. doi: 10.1016/j.eswa.2015.12.047
|
[9] |
姚竟发, 滕桂法, 霍利民, 等. 联合收割机多机协同作业路径优化[J]. 农业工程学报, 2019, 35(17): 12-18.
|
[10] |
HAN X, LAI Y, WU H. A path optimization algorithm for multiple unmanned tractors in peach orchard management[J]. Agronomy, 2022, 12(4): 856. doi: 10.3390/agronomy12040856
|
[11] |
罗承铭, 熊陈文, 黄小毛, 等. 四边形田块下油菜联合收获机全覆盖作业路径规划算法[J]. 农业工程学报, 2021, 37(9): 140-148.
|
[12] |
黄小毛, 丁幼春, 宗望远, 等. 农机作业地头转弯方式及路径生成算法研究[C]//中国农业工程学会(CSAE). 中国农业工程学会2011年学术年会论文集. 重庆: CSAE, 2011: 406-411.
|
[13] |
HE Z, BAO Y, YU Q, et al. Dynamic path planning method for headland turning of unmanned agricultural vehicles[J]. Computers and Electronics in Agriculture, 2023, 206: 107699. doi: 10.1016/j.compag.2023.107699
|
[14] |
SEYYEDHASANI H, DVORAK J S. Reducing field work time using fleet routing optimization[J]. Biosystems Engineering, 2018, 169: 1-10. doi: 10.1016/j.biosystemseng.2018.01.006
|
[15] |
BOCHTIS D D, SØRENSEN C G. The vehicle routing problem in field logistics part I[J]. Biosystems Engineering, 2009, 104(4): 447-457. doi: 10.1016/j.biosystemseng.2009.09.003
|
[16] |
KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80: 8091-8126. doi: 10.1007/s11042-020-10139-6
|
[17] |
LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127: 180-189. doi: 10.1016/j.procs.2018.01.113
|
[18] |
叶多福, 刘刚, 何兵. 一种多染色体遗传算法解决多旅行商问题[J]. 系统仿真学报, 2019, 31(1): 36-42.
|
[19] |
LIU L, WANG X, YANG X, et al. Path planning techniques for mobile robots: Review and prospect[J]. Expert Systems with Applications, 2023, 227: 120254.
|
[20] |
王猛, 赵博, 刘阳春, 等. 基于多变异分组遗传算法的多机协同作业静态任务分配[J]. 农业机械学报, 2021, 52(7): 19-28.
|
[21] |
张琛, 詹志辉. 遗传算法选择策略比较[J]. 计算机工程与设计, 2009, 30(23): 5471-5474.
|
[22] |
陈加俊, 谭代伦. 求解旅行商问题的探索−开发−跳跃策略单亲遗传算法[J]. 计算机应用研究, 2023, 40(5): 1375-1380.
|
[23] |
CONESA-MUÑOZ J, GONZALEZ-DE-SOTO M, GONZALEZ-DE-SANTOS P, et al. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks[J]. Sensors, 2015, 15(3): 5402-5428. doi: 10.3390/s150305402
|
[24] |
SEYYEDHASANI H, DVORAK J S. Using the Vehicle Routing Problem to reduce field completion times with multiple machines[J]. Computers and Electronics in Agriculture, 2017, 134: 142-150. doi: 10.1016/j.compag.2016.11.010
|
1. |
贾鹿,赵磊,凌飞,李广亚. 基于归一化RBFNN的油井动液面测量数据异常辨识. 电子测量技术. 2024(24): 188-194 .
![]() | |
2. |
李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
![]() | |
3. |
郑显润,郑鹏,王文秀,程亚红,苏宇锋. 基于多尺度特征提取深度残差网络的水稻害虫识别. 华南农业大学学报. 2023(03): 438-446 .
![]() | |
4. |
邓雪阳,邓达平,苏万靖. 基于并行深度卷积神经网络的舰船通信异常数据检测研究. 舰船科学技术. 2023(15): 119-122 .
![]() | |
5. |
杨亚琦,李博雄,杨东霞,刘燕. 基于信息熵的异常数据判别方法. 科学技术创新. 2023(24): 194-199 .
![]() | |
6. |
杜肖鹏,李恺,王春辉,侯永,尹义蕾,潘守江,张凌风. 国内温室空气温湿度检测及传输技术研究进展. 农业工程技术. 2022(34): 28-34 .
![]() |