• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LIN Qiupeng, ZHU Xiuli, MA Linsha, et al. Recent advances in prime editing system[J]. Journal of South China Agricultural University, 2024, 45(2): 159-171. DOI: 10.7671/j.issn.1001-411X.202309002
Citation: LIN Qiupeng, ZHU Xiuli, MA Linsha, et al. Recent advances in prime editing system[J]. Journal of South China Agricultural University, 2024, 45(2): 159-171. DOI: 10.7671/j.issn.1001-411X.202309002

Recent advances in prime editing system

More Information
  • Author Bio:

    LIN Qiupeng:   林秋鹏,华南农业大学首聘教授,博士生导师,研究方向为作物基因组编辑技术开发及应用,主要围绕开发高效、安全的精准编辑体系并将该技术应用于农业育种及医疗领域等开展工作。在国际上率先建立了适用于植物的引导编辑技术体系,并开发了多套提升该系统效率的全新方法,此外还开发了一系列基因组编辑新策略并应用于植物基因功能研究或分子育种;相关工作已申请4项PCT国际专利。获博士后创新人才支持计划(博新计划)及中国博士后科学基金一等资助,获中国科学院优秀博士毕业论文。近年来以第一作者(含共同)在《Cell》《Nature Biotechnology》《Nature Protocols》《Molecular Cell》等国际权威杂志发表SCI论文10篇,累计影响因子超过350

  • Received Date: September 02, 2023
  • Available Online: December 10, 2023
  • Published Date: November 01, 2023
  • Prime editing (PE) system is a newly developed and greatly revolutionized genome editing technology. The system is based on prime editors, which are composed of two components: A fusion protein of nCas9 (H840A) and reverse transcriptase (RT), and a pegRNA which contains a PBS (Primer binding site) sequence and an RT template (RTT) sequence. The PE system can realize all 12 types of base substitutions and small fragment DNA additions and deletions without double-strand breaks, which is a new paradigm for precision editing. In less than 4 years since its development in 2019, the PE system, as a universal technology platform, has been widely used in various fields such as healthcare and agriculture, generating a large number of excellent application cases such as new germplasm resources and gene therapy drugs. PE, as the most flexible and promising new means of precision genome editing, still suffers from low efficiency, insufficient ability to manipulate large fragments, complex design of system components (such as pegRNAs), incomplete evaluation of safety, and still requires in-depth research. This paper described in detail the technical principles and constraints of PE systems, comprehensively summarized the optimization strategies of PE systems since their development, and the current status of PE applications on animal and plant systems and medical fields. It also gave an outlook on the development prospects of PE.

  • [1]
    CHEN K, WANG Y, ZHANG R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70: 667-697. doi: 10.1146/annurev-arplant-050718-100049
    [2]
    刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 38-49.
    [3]
    CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. doi: 10.1126/science.1231143
    [4]
    JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. doi: 10.1126/science.1225829
    [5]
    GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586.
    [6]
    单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展[J]. 遗传, 2015, 37(10): 953-973.
    [7]
    ZHANG Y, PRIBIL M, PALMGREN M, et al. A CRISPR way for accelerating improvement of food crops[J]. Nature Food, 2020, 1(4): 200-205. doi: 10.1038/s43016-020-0051-8
    [8]
    瞿礼嘉, 郭冬姝, 张金喆, 等. CRISPR/Cas系统在植物基因组编辑中的应用[J]. 生命科学, 2015, 27(1): 64-70.
    [9]
    王皓毅, 李劲松, 李伟. 基于CRISPR-Cas9新型基因编辑技术研究[J]. 生命科学, 2016, 28(8): 867-870.
    [10]
    LIU G, LIN Q, JIN S, et al. The CRISPR-Cas toolbox and gene editing technologies[J]. Molecular Cell, 2022, 82(2): 333-347. doi: 10.1016/j.molcel.2021.12.002
    [11]
    GAO C. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
    [12]
    KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. doi: 10.1038/nature17946
    [13]
    GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. doi: 10.1038/nature24644
    [14]
    宗媛, 高彩霞. 碱基编辑系统研究进展[J]. 遗传, 2019, 41(9): 777-800.
    [15]
    魏瑜, 张晓辉, 李大力. 基因编辑之“新宠”: 单碱基基因组编辑系统[J]. 遗传, 2017, 39(12): 1115-1121.
    [16]
    孙宏伟, 梁普平, 黄军就. 人类胚胎单碱基编辑治疗遗传疾病的研究[J]. 生命科学, 2018, 30(9): 926-931.
    [17]
    张雅玲, 王锌和, 李构思, 等. 新型DNA碱基编辑器的研究进展[J]. 华南农业大学学报, 2022, 43(6): 1-16. doi: 10.7671/j.issn.1001-411X.202208053
    [18]
    JIN S, ZONG Y, GAO Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437): 292-295. doi: 10.1126/science.aaw7166
    [19]
    ZUO E, SUN Y, WEI W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289-292. doi: 10.1126/science.aav9973
    [20]
    GRÜNEWALD J, ZHOU R, GARCIA S P, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756): 433-437. doi: 10.1038/s41586-019-1161-z
    [21]
    ZHOU C, SUN Y, YAN R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764): 275-278. doi: 10.1038/s41586-019-1314-0
    [22]
    KURT I C, ZHOU R, IYER S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 2021, 39(1): 41-46. doi: 10.1038/s41587-020-0609-x
    [23]
    ZHAO D, LI J, LI S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1): 35-40. doi: 10.1038/s41587-020-0592-2
    [24]
    TONG H, WANG X, LIU Y, et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase[J]. Nature Biotechnology, 2023, 41(8): 1080-1084. doi: 10.1038/s41587-022-01595-6
    [25]
    CHEN L, HONG M, LUAN C, et al. Adenine transversion editors enable precise, efficient A · T-to-C · G base editing in mammalian cells and embryos[J/OL]. Nature Biotechnology, (2023-07-10)[2023-09-03]. https://doi.org/10.1038/s41587-023-01821-9.
    [26]
    ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. doi: 10.1038/s41586-019-1711-4
    [27]
    LIU Y, HUANG X, WANG X. Search-and-replace editing of genetic information[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(2): 231-232. doi: 10.15302/J-FASE-2020322
    [28]
    LIN J, LIU X, LU Z, et al. Modeling a cataract disorder in mice with prime editing[J]. Molecular Therapy-Nucleic Acids, 2021, 25: 494-501. doi: 10.1016/j.omtn.2021.06.020
    [29]
    LI Y, LI W, LI J. The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science[J]. Journal of Genetics and Genomics, 2021, 48(8): 661-670. doi: 10.1016/j.jgg.2021.05.001
    [30]
    GAO P, LYU Q, GHANAM A R, et al. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression[J]. Genome Biology, 2021, 22(1): 83. doi: 10.1186/s13059-021-02304-3
    [31]
    LIN Q, ZONG Y, XUE C, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585. doi: 10.1038/s41587-020-0455-x
    [32]
    TANG X, SRETENOVIC S, REN Q, et al. Plant prime editors enable precise gene editing in rice cells[J]. Molecular Plant, 2020, 13(5): 667-670. doi: 10.1016/j.molp.2020.03.010
    [33]
    VEILLET F, KERMARREC M P, CHAUVIN L, et al. Prime editing is achievable in the tetraploid potato, but needs improvement[EB/OL]. bioRxiv: 111162 (2020-06-18)[2023-09-03]. https://doi.org/10.1101/2020.06.18.159111.
    [34]
    VU T V, KIM J, DAS S, et al. The obstacles and potential clues of prime editing applications in tomato, a dicot plant[EB/OL]. bioRxiv: 435378 (2021-05-21)[2023-09-03]. https://doi.org/10.1101/2021.03.15.435378.
    [35]
    LANDRUM M J, LEE J M, RILEY G R, et al. ClinVar: Public archive of relationships among sequence variation and human phenotype[J]. Nucleic Acids Research, 2014, 42(D1): D980-D985. doi: 10.1093/nar/gkt1113
    [36]
    WANG L, KAYA H B, ZHANG N, et al. Spelling changes and fluorescent tagging with prime editing vectors for plants[J]. Frontiers in Genome Editing, 2021, 3: 617553. doi: 10.3389/fgeed.2021.617553
    [37]
    LI H, LI J, CHEN J, et al. Precise modifications of both exogenous and endogenous genes in rice by prime editing[J]. Molecular Plant, 2020, 13(5): 671-674. doi: 10.1016/j.molp.2020.03.011
    [38]
    XU R, LI J, LIU X, et al. Development of plant prime-editing systems for precise genome editing[J]. Plant Communications, 2020, 1(3): 100043. doi: 10.1016/j.xplc.2020.100043
    [39]
    XU W, ZHANG C, YANG Y, et al. Versatile nucleotides substitution in plant using an improved prime editing system[J]. Molecular Plant, 2020, 13(5): 675-678. doi: 10.1016/j.molp.2020.03.012
    [40]
    LIU Y, LI X, HE S, et al. Efficient generation of mouse models with the prime editing system[J]. Cell Discovery, 2020, 6: 27. doi: 10.1038/s41421-020-0165-z
    [41]
    MARZEC M, HENSELH G. Prime editing: Game changer for modifying plant genomes[J]. Trends in Plant Science, 2020, 25(8): 722-724.
    [42]
    NELSON J W, RANDOLPH P B, SHEN S P, et al. Engineered pegRNAs improve prime editing efficiency[J]. Nature Biotechnology, 2022, 40(3): 402-410. doi: 10.1038/s41587-021-01039-7
    [43]
    LI X, WANG X, SUN W, et al. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes[J]. Journal of Molecular Cell Biology, 2022, 14(4): mjac022. doi: 10.1093/jmcb/mjac022
    [44]
    LIU Y, YANG G, HUANG S, et al. Enhancing prime editing by Csy4-mediated processing of pegRNA[J]. Cell Research, 2021, 31(10): 1134-1136. doi: 10.1038/s41422-021-00520-x
    [45]
    ZHANG G, LIU Y, HUANG S, et al. Enhancement of prime editing via xrRNA motif-joined pegRNA[J]. Nature Communications, 2022, 13(1): 1856. doi: 10.1038/s41467-022-29507-x
    [46]
    PERROUD P, GUYON-DEBAST A, CASACUBERTA J M, et al. Improved prime editing allows for routine predictable gene editing in Physcomitrium patens[J]. Journal of Experimental Botany, 2023, 74(19): 6176-6187. doi: 10.1093/jxb/erad189
    [47]
    CHAI Y, JIANG Y, WANG J, et al. MS2 RNA aptamer enhances prime editing in rice[EB/OL]. bioRxiv: 465209 (2021-10-21)[2023-09-03]. https://doi.org/10.1101/2021.10.20.465209.
    [48]
    LIU B, DONG X, CHENG H, et al. A split prime editor with untethered reverse transcriptase and circular RNA template[J]. Nature Biotechnology, 2022, 40(9): 1388-1393. doi: 10.1038/s41587-022-01255-9
    [49]
    FENG Y, LIU S, MO Q, et al. Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs[J]. Protein & Cell, 2023, 14(4): 304-308.
    [50]
    LI X, ZHOU L, GAO B, et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure[J]. Nature Communications, 2022, 13(1): 1669. doi: 10.1038/s41467-022-29339-9
    [51]
    XU W, YANG Y, YANG B, et al. A design optimized prime editor with expanded scope and capability in plants[J]. Nature Plants, 2022, 8(1): 45-52.
    [52]
    JIANG Y Y, CHAI Y P, LU M H, et al. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize[J]. Genome Biology, 2020, 21(1): 257. doi: 10.1186/s13059-020-02170-5
    [53]
    ZOU J, MENG X, LIU Q, et al. Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice[J]. Science China-Life Sciences, 2022, 65(11): 2328-2331. doi: 10.1007/s11427-022-2147-2
    [54]
    ZONG Y, LIU Y, XUE C, et al. An engineered prime editor with enhanced editing efficiency in plants[J]. Nature Biotechnology, 2022, 40(9): 1394-1402. doi: 10.1038/s41587-022-01254-w
    [55]
    NI P, ZHAO Y, ZHOU X, et al. Efficient and versatile multiplex prime editing in hexaploid wheat[J]. Genome Biology, 2023, 24(1): 156. doi: 10.1186/s13059-023-02990-1
    [56]
    LIANG Z, WU Y, GUO Y, et al. Addition of the T5 exonuclease increases the prime editing efficiency in plants[J]. Journal of Genetics and Genomics, 2023, 50(8): 582-588. doi: 10.1016/j.jgg.2023.03.008
    [57]
    LI J, CHEN L, LIANG J, et al. Development of a highly efficient prime editor 2 system in plants[J]. Genome Biology, 2022, 23(1): 161. doi: 10.1186/s13059-022-02730-x
    [58]
    LIN Q, JIN S, ZONG Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021, 39(8): 923-927. doi: 10.1038/s41587-021-00868-w
    [59]
    LI J, DING J, ZHU J, et al. Prime editing-mediated precise knockin of protein tag sequences in the rice genome[J]. Plant Communications, 2023, 4(3): 100572. doi: 10.1016/j.xplc.2023.100572
    [60]
    QIAO D, WANG J, LU M H, et al. Optimized prime editing efficiently generates heritable mutations in maize[J]. Journal of Integrative Plant Biology, 2023, 65(4): 900-906. doi: 10.1111/jipb.13428
    [61]
    HUANG S, ZHANG Z, TAO W, et al. Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA[J]. Molecular Therapy, 2022, 30(9): 2923-2932. doi: 10.1016/j.ymthe.2022.07.002
    [62]
    QI Y, ZHANG Y, TIAN S, et al. An optimized prime editing system for efficient modification of the pig genome[J/OL]. Science China-Life Sciences, (2023-08-12)[2023-09-03]. https://doi.org/10.1007/s11427-022-2334-y.
    [63]
    DOMAN J L, PANDEY S, NEUGEBAUER M E, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors[J]. Cell, 2023, 186(18): 3983-4002. doi: 10.1016/j.cell.2023.07.039
    [64]
    LIU P, LIANG S Q, ZHENG C, et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice[J]. Nature Communications, 2021, 12(1): 2121. doi: 10.1038/s41467-021-22295-w
    [65]
    CHEN P J, HUSSMANN J A, YAN J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J]. Cell, 2021, 184(22): 5635-5652. doi: 10.1016/j.cell.2021.09.018
    [66]
    SONG M, LIM J M, MIN S, et al. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain[J]. Nature Communications, 2021, 12(1): 5617. doi: 10.1038/s41467-021-25928-2
    [67]
    PARK S J, JEONG T Y, SHIN S K, et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor[J]. Genome Biology, 2021, 22(1): 170. doi: 10.1186/s13059-021-02389-w
    [68]
    VELIMIROVIC M, ZANETTI L C, SHEN M W, et al. Peptide fusion improves prime editing efficiency[J]. Nature Communications, 2022, 13(1): 3512. doi: 10.1038/s41467-022-31270-y
    [69]
    ZHUANG Y, LIU J, WU H, et al. Increasing the efficiency and precision of prime editing with guide RNA pairs[J]. Nature Chemical Biology, 2022, 18(1): 29-37. doi: 10.1038/s41589-021-00889-1
    [70]
    YUAN Q, GAO X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays[J]. Nature Communications, 2022, 13(1): 2771. doi: 10.1038/s41467-022-30514-1
    [71]
    LU Y, TIAN Y, SHEN R, et al. Precise genome modification in tomato using an improved prime editing system[J]. Plant Biotechnology Journal, 2021, 19(3): 415-417. doi: 10.1111/pbi.13497
    [72]
    BOSCH J A, BIRCHAK G, PERRIMON N. Precise genome engineering in Drosophila using prime editing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(1): e2021996118.
    [73]
    ADIKUSUMA F, LUSHINGTON C, ARUDKUMAR J, et al. Optimized nickase- and nuclease-based prime editing in human and mouse cells[J]. Nucleic Acids Research, 2021, 49(18): 10785-10795. doi: 10.1093/nar/gkab792
    [74]
    PETERKA M, AKRAP N, LI S, et al. Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing[J]. Nature Communications, 2022, 13(1): 1240. doi: 10.1038/s41467-022-28771-1
    [75]
    TAO R, WANG Y, JIAO Y, et al. Bi-PE: Bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells[J]. Nucleic Acids Research, 2022, 50(11): 6423-6434. doi: 10.1093/nar/gkac506
    [76]
    SÜRÜN D, SCHNEIDER A, MIRCETIC J, et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors[J]. Genes, 2020, 11(5): 511. doi: 10.3390/genes11050511
    [77]
    PETRI K, ZHANG W, MA J, et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J]. Nature Biotechnology, 2022, 40(2): 189-193. doi: 10.1038/s41587-021-00901-y
    [78]
    BOCK D, ROTHGANGL T, VILLIGER L, et al. In vivo prime editing of a metabolic liver disease in mice[J]. Science Translational Medicine, 2022, 14(636): eabl9238. doi: 10.1126/scitranslmed.abl9238
    [79]
    DAVIS J R, BANSKOTA S, LEVY J M, et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs[J/OL]. Nature Biotechnology, (2023-06-01)[2023-09-03]. https://doi.org/10.1038/s41587-023-01758-z.
    [80]
    SHE K, LIU Y, ZHAO Q, et al. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 57. doi: 10.1038/s41392-022-01234-1
    [81]
    ZHENG C, LIANG S Q, LIU B, et al. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver[J]. Molecular Therapy, 2022, 30(3): 1343-1351. doi: 10.1016/j.ymthe.2022.01.005
    [82]
    GRÜNEWALD J, MILLER B R, SZALAY R N, et al. Engineered CRISPR prime editors with compact, untethered reverse transcriptases[J]. Nature Biotechnology, 2023, 41(3): 337-343. doi: 10.1038/s41587-022-01473-1
    [83]
    GAO Z, RAVENDRAN S, MIKKELSEN N S, et al. A truncated reverse transcriptase enhances prime editing by split AAV vectors[J]. Molecular Therapy, 30(9): 2942-2951.
    [84]
    HUA K, JIANG Y, TAO X, et al. Precision genome engineering in rice using prime editing system[J]. Plant Biotechnology Journal, 2020, 18(11): 2167-2169. doi: 10.1111/pbi.13395
    [85]
    AIRD E J, ZDECHLIK A C, RUIS B L, et al. Split Staphylococcus aureus prime editor for AAV delivery[EB/OL]. bioRxiv: 426237 (2021-01-11)[2023-09-03]. https://doi.org/10.1101/2021.01.11.426237.
    [86]
    KWEON J, YOON J, JANG A, et al. Engineered prime editors with PAM flexibility[J]. Molecular Therapy, 2021, 29(6): 2001-2007. doi: 10.1016/j.ymthe.2021.02.022
    [87]
    OH Y, LEE W, HUR J K, et al. Expansion of the prime editing modality with Cas9 from Francisella novicida[J]. Genome Biology, 2022, 23(1): 92. doi: 10.1186/s13059-022-02644-8
    [88]
    SHOU J, LI J, LIU Y, et al. Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion[J]. Molecular Cell, 2018, 71(4): 498-509. doi: 10.1016/j.molcel.2018.06.021
    [89]
    DA SILVA J F, OLIVEIRA G P, ARASE-VERGE E A, et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair[J]. Nature Communications, 2022, 13(1): 760. doi: 10.1038/s41467-022-28442-1
    [90]
    CHOW R D, CHEN J S, SHEN J, et al. A web tool for the design of prime-editing guide RNAs[J]. Nature Biomedical Engineering, 2021, 5(2): 190-194.
    [91]
    HSU J Y, GRÜNEWALD J, SZALAY R, et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs[J]. Nature Communications, 2021, 12(1): 1034. doi: 10.1038/s41467-021-21337-7
    [92]
    BHAGWAT A M, GRAUMANN J, WIEGANDT R, et al. Multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets[J]. Life Science Alliance, 2020, 3(11): e202000757. doi: 10.26508/lsa.202000757
    [93]
    SIEGNER S M, KARASU M E, SCHRÖDER M S, et al. PnB Designer: A web application to design prime and base editor guide RNAs for animals and plants[J]. BMC Bioinformatics, 2021, 22(1): 101. doi: 10.1186/s12859-021-04034-6
    [94]
    STANDAGE-BEIER K, TEKEL S J, BRAFMAN D A, et al. Prime editing guide RNA design automation using PINE-CONE[J]. ACS Synthetic Biology, 2021, 10(2): 422-427. doi: 10.1021/acssynbio.0c00445
    [95]
    MORRIS J A, RAHMAN J A, GUO X, et al. Automated design of CRISPR prime editors for 56, 000 human pathogenic variants[J]. iScience, 2021, 24(11): 103380. doi: 10.1016/j.isci.2021.103380
    [96]
    HWANG G, JEONG Y K, HABIB O, et al. PE-Designer and PE-Analyzer: Web-based design and analysis tools for CRISPR prime editing[J]. Nucleic Acids Research, 2021, 49(W1): W499-W504. doi: 10.1093/nar/gkab319
    [97]
    KIM H K, YU G, PARK J, et al. Predicting the efficiency of prime editing guide RNAs in human cells[J]. Nature Biotechnology, 2021, 39(2): 198-206. doi: 10.1038/s41587-020-0677-y
    [98]
    JIN S, LIN Q, GAO Q, et al. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs)[J]. Nature Protocols, 2023, 18(3): 831-853. doi: 10.1038/s41596-022-00773-9
    [99]
    KOEPPEL J, WELLER J, PEETS E M, et al. Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants[J/OL]. Nature Biotechnology, (2023-03-22)[2023-09-03]. https://doi.org/10.1038/s41587-023-01678-y.
    [100]
    LI Y, CHEN J, TSAI S Q, et al. Easy-Prime: A machine learning-based prime editor design tool[J]. Genome Biology, 2021, 22(1): 235. doi: 10.1186/s13059-021-02458-0
    [101]
    YARNALL M T N, IOANNIDI E I, SCHMITT-ULMS C, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases[J]. Nature Biotechnology, 2023, 41(4): 500-512. doi: 10.1038/s41587-022-01527-4
    [102]
    WANG J, HE Z, WANG G, et al. Efficient targeted insertion of large DNA fragments without DNA donors[J]. Nature Methods, 2022, 19(3): 331-340. doi: 10.1038/s41592-022-01399-1
    [103]
    ANZALONE A V, GAO X D, PODRACKY C J, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing[J]. Nature Biotechnology, 2022, 40(5): 731-740. doi: 10.1038/s41587-021-01133-w
    [104]
    SUN C, LEI Y, LI B, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J/OL]. Nature Biotechnology, (2023-05-22)[2023-09-03]. https://doi.org/10.1038/s41587-023-01769-w.
    [105]
    CHOI J, CHEN W, SUITER C C, et al. Precise genomic deletions using paired prime editing[J]. Nature Biotechnology, 2022, 40(2): 218-226. doi: 10.1038/s41587-021-01025-z
    [106]
    JIANG T, ZHANG X O, WENG Z, et al. Deletion and replacement of long genomic sequences using prime editing[J]. Nature Biotechnology, 2022, 40(2): 227-234. doi: 10.1038/s41587-021-01026-y
    [107]
    TAO R, WANG Y, HU Y, et al. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 108. doi: 10.1038/s41392-022-00936-w
    [108]
    KWEON J, HWANG H Y, RYU H, et al. Targeted genomic translocations and inversions generated using a paired prime editing strategy[J]. Molecular Therapy, 2023, 31(1): 249-259. doi: 10.1016/j.ymthe.2022.09.008
    [109]
    LI H, ZHU Z, LI S, et al. Multiplex precision gene editing by a surrogate prime editor in rice[J]. Molecular Plant, 2022, 15(7): 1077-1080. doi: 10.1016/j.molp.2022.05.009
    [110]
    KIM D Y, MOON S B, KO J, et al. Unbiased investigation of specificities of prime editing systems in human cells[J]. Nucleic Acids Research, 2020, 48(18): 10576-10589. doi: 10.1093/nar/gkaa764
    [111]
    JIN S, LIN Q, LUO Y, et al. Genome-wide specificity of prime editors in plants[J]. Nature Biotechnology, 2021, 39(10): 1292-1299. doi: 10.1038/s41587-021-00891-x
    [112]
    SCHENE I F, JOORE I P, OKA R, et al. Prime editing for functional repair in patient-derived disease models[J]. Nature Communications, 2020, 11(1): 5352. doi: 10.1038/s41467-020-19136-7
    [113]
    GAO R, FU Z C, LI X, et al. Genomic and transcriptomic analyses of prime editing guide RNA-independent off-target effects by prime editors[J]. CRISPR Journal, 2022, 5(2): 276-293. doi: 10.1089/crispr.2021.0080
    [114]
    HABIB O, HABIB G, HWANG G, et al. Comprehensive analysis of prime editing outcomes in human embryonic stem cells[J]. Nucleic Acids Research, 2022, 50(2): 1187-1197. doi: 10.1093/nar/gkab1295
    [115]
    BUTT H, RAO G S, SEDEEK K, et al. Engineering herbicide resistance via prime editing in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2370-2372. doi: 10.1111/pbi.13399
    [116]
    JIANG Y, CHAI Y, QIAO D, et al. Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS[J]. Molecular Plant, 2022, 15(11): 1646-1649. doi: 10.1016/j.molp.2022.09.006
    [117]
    XU R, LIU X, LI J, et al. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice[J]. Nature Plants, 2021, 7(7): 888-892. doi: 10.1038/s41477-021-00942-w
    [118]
    GUPTA A, LIU B, CHEN Q J, et al. High-efficiency prime editing enables new strategies for broad-spectrum resistance to bacterial blight of rice[J]. Plant Biotechnology Journal, 2023, 21(7): 1454-1464. doi: 10.1111/pbi.14049
    [119]
    ZHANG J, ZHANG L, ZHANG C, et al. Developing an efficient and visible prime editing system to restore tobacco 8-hydroxy-copalyl diphosphate gene for labdane diterpene Z-abienol biosynthesis[J/OL]. Science China-Life Sciences, (2023-08-04)[2023-09-03]. https://doi.org/10.1007/s11427-022-2396-x.
    [120]
    CHEMELLO F, CHAI A C, LI H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing[J]. Science Advances, 2021, 7(18): eabg4910. doi: 10.1126/sciadv.abg4910
    [121]
    SUN R, CUI Y, LIU Z, et al. A prime editor efficiently repaired human induced pluripotent stem cells with AR gene mutation (c. 2710G > A; p. V904M)[J]. Stem Cell Research, 2023, 69: 103102. doi: 10.1016/j.scr.2023.103102
    [122]
    QIAN Y, ZHAO D, SUI T, et al. Efficient and precise generation of Tay-Sachs disease model in rabbit by prime editing system[J]. Cell Discovery, 2021, 7(1): 50. doi: 10.1038/s41421-021-00276-z
  • Cited by

    Periodical cited type(1)

    1. 王晨雨,刘孟军,王立新,刘志国. CRISPR/Cas9技术研究进展及其在园艺植物中的应用进展. 园艺学报. 2024(07): 1439-1454 .

    Other cited types(0)

Catalog

    Article views (980) PDF downloads (158) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return