Citation: | JIA Sisi, ZENG Ruizhen, ZHANG Zhisheng, et al. Research advances on molecular breeding technique of orchid[J]. Journal of South China Agricultural University, 2024, 45(1): 1-14. DOI: 10.7671/j.issn.1001-411X.202308023 |
Orchid has high ornamental, medicinal, edible, ecological and culture values, which is loved by people all over the world due to its plentiful species, diversified exquisite floral morphology, charming colour, pleasant aroma and mysterious origin. Molecular breeding is the developmental direction in orchid breeding and great progresses have been made in recent years. In this paper, we summarized the advancements on genome sequencing, molecular genetic basis and gene cloning of main breeding objective traits, the techniques of genetic transformation, gene editing and molecular marker assisted selection in orchid, and discussed the key points of future study on molecular breeding technique and variety innovation in orchid.
[1] |
刘仲健, 陈心启, 茹正忠. 中国兰属植物[M]. 北京: 科学出版社, 2006.
|
[2] |
ZHANG D Y, ZHAO X W, LI Y Y, et al. Advances and prospects of orchid research and industrialization[J]. Horticulture Research, 2022, 9: uhac220. doi: 10.1093/hr/uhac220
|
[3] |
HINSLEY A, DE BOER H J, FAY M F. A review of the trade in orchids and its implications for conservation[J]. Botanical Journal of the Linnean Society, 2018, 186(4): 435-455. doi: 10.1093/botlinnean/box083
|
[4] |
LI, M M, SU Q L, ZU J R, et al. Triploid cultivars of Cymbidium act as a bridge in the formation of polyploid plants[J]. Frontiers in Plant Science, 2022, 13: 1029915. doi: 10.3389/fpls.2022.1029915
|
[5] |
LI C U, DONG N, ZHAO Y M, et al. A review for the breeding of orchids: Current achievements and prospects[J]. Horticultural Plant Journal, 2021, 7(5): 380-392. doi: 10.1016/j.hpj.2021.02.006
|
[6] |
CAI J, LIU X, VANNESTE K, et al. The genome sequence of the orchid Phalaenopsis equestris[J]. Nature Genetics, 2015, 47(1): 65-72.
|
[7] |
YANG F X, GAO J, WEI Y L, et al. The genome of Cymbidium sinense revealed the evolution of orchid traits[J]. Plant Biotechnology Journal, 2021, 19(12): 2501-2516. doi: 10.1111/pbi.13676
|
[8] |
AI Y, LI Z, SUN W H, et al. The Cymbidium genome reveals the evolution of unique morphological traits[J]. Horticulture Research, 2021, 8: 255. doi: 10.1038/s41438-021-00683-z
|
[9] |
CHUNG O, KIM J, BOLSER D, et al. A chromosome-scale genome assembly and annotation of the spring orchid (Cymbidium goeringii)[J]. Molecular Ecology Resources, 2022, 22(3): 1168-1177. doi: 10.1111/1755-0998.13537
|
[10] |
SUN Y, CHEN G Z, HUANG J, et al. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids[J]. Ornamental Plant Research, 2021, 1(1): 1-13.
|
[11] |
FAN W S, HE Z S, ZHE M Q, et al. High-quality Cymbidium mannii genome and multifaceted regulation of crassulacean acid metabolism in epiphytes[J]. Plant Communications, 2023, 4(5): 100564.
|
[12] |
YAN L, WANG X, LIU H, et al. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb[J]. Molecular Plant, 2015, 8(6): 922-934. doi: 10.1016/j.molp.2014.12.011
|
[13] |
ZHANG G Q, XU Q, BIAN C, et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution[J]. Scientific Reports, 2016, 6: 19029. doi: 10.1038/srep19029
|
[14] |
ZHANG Y, ZHANG G Q, ZHANG D, et al. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution[J]. Horticulture Research, 2021, 8: 183. doi: 10.1038/s41438-021-00621-z
|
[15] |
NIU Z, ZHU F, FAN Y, et al. The chromosome-level reference genome assembly for Dendrobium officinale and its utility of functional genomics research and molecular breeding study[J]. Acta Pharmaceutica Sinica B, 2021, 11(7): 2080-2092. doi: 10.1016/j.apsb.2021.01.019
|
[16] |
HAN B X, JING Y, DAI J, et al. A chromosome-level genome assembly of Dendrobium huoshanense using long reads and Hi-C data[J]. Genome Biology and Evolution, 2020, 12(12): 2486-2490. doi: 10.1093/gbe/evaa215
|
[17] |
XU Q, NIU S C, LI K L, et al. Chromosome-scale assembly of the Dendrobium nobile genome provides insights into the molecular mechanism of the biosynthesis of the medicinal active ingredient of Dendrobium[J]. Frontiers in Genetics, 2022, 13: 844622. doi: 10.3389/fgene.2022.844622
|
[18] |
HUANG J Z, LIN C P, CHENG T C, et al. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation[J]. PeerJ, 2016, 4: e2017. doi: 10.7717/peerj.2017
|
[19] |
CHAO Y T, CHEN W C, CHEN C Y, et al. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding[J]. Plant Biotechnology Journal, 2018, 16(12): 2027-2041. doi: 10.1111/pbi.12936
|
[20] |
LI M H, LIU K W, LI Z, et al. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy[J]. Nature Plants, 2022, 8(4): 373-388. doi: 10.1038/s41477-022-01127-9
|
[21] |
YUAN Y, JIN X H, LIU J, et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy[J]. Nature Communications, 2018, 9: 1615. doi: 10.1038/s41467-018-03423-5
|
[22] |
CHEN S S, WANG X, WANG Y Z, et al. Improved de novo assembly of the achlorophyllous orchid Gastrodia elata[J]. Frontiers in Genetics, 2020, 11: 580568.
|
[23] |
XU Y X, LEI Y T, SU Z X, et al. A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants[J]. The Plant Journal, 2021, 108(6): 1609-1623. doi: 10.1111/tpj.15528
|
[24] |
BAE E K, AN C, KANG M J, et al. Chromosome-level genome assembly of the fully mycoheterotrophic orchid Gastrodia elata[J]. G3 Genes Genomes Genetics, 2022, 12(3): jkab433. doi: 10.1093/g3journal/jkab433
|
[25] |
WANG Y S, SHAHID M Q. Genome sequencing and resequencing identified three horizontal gene transfers and uncovered the genetic mechanism on the intraspecies adaptive evolution of Gastrodia elata Blume[J]. Frontiers in Plant Science, 2023, 13: 1035157. doi: 10.3389/fpls.2022.1035157
|
[26] |
JIANG Y, HU X D, YUAN Y, et al. The Gastrodia menghaiensis (Orchidaceae) genome provides new insights of orchid mycorrhizal interactions[J]. BMC Plant Biology, 2022, 22(1): 179.
|
[27] |
JIANG L, LIN M F, WANG H, et al. Haplotype-resolved genome assembly of Bletilla striata (Thunb. ) Reichb. f. to elucidate medicinal value[J]. The Plant Journal, 2022, 111(5): 1340-1353. doi: 10.1111/tpj.15892
|
[28] |
HASING T, TANG H B, BRYM M, et al. A phased Vanilla planifolia genome enables genetic improvement of flavour and production[J]. Nature Food, 2020, 1(12): 811-819. doi: 10.1038/s43016-020-00197-2
|
[29] |
PIET Q, DROC G, MARANDE W, et al. A chromosome-level haplotype-phased Vanilla planifolia genome highlights the challenge of partial endoreplication for accurate whole genome assembly[J]. Plant Communications, 2022, 3(5): 100330.
|
[30] |
ZHANG G Q, LIU K W, LI Z, et al. The Apostasia genome and the evolution of orchids[J]. Nature, 2017, 549: 379-383. doi: 10.1038/nature23897
|
[31] |
ZHANG W, ZHANG G, ZENG P, et al. Genome sequence of Apostasia ramifera provides insights into the adaptive evolution in orchids[J]. BMC Genomics, 2021, 22: 536. doi: 10.1186/s12864-021-07852-3
|
[32] |
JOHNSON E T, YI H, SHIN B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins[J]. The Plant Journal, 1999, 19(1): 81-85. doi: 10.1046/j.1365-313X.1999.00502.x
|
[33] |
SU V, HSU B D. Cloning and expression of a putative cytochrome P450 gene that influences the colour of Phalaenopsis flowers[J]. Biotechnology Letters, 2003, 25(22): 1933-1939. doi: 10.1023/B:BILE.0000003989.19657.53
|
[34] |
CHEN W H, HSU C Y, CHENG H Y, et al. Downregulation of putative UDP-glucose: Flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis[J]. Plant Cell Reports, 2011, 30(6): 1007-1017. doi: 10.1007/s00299-011-1006-1
|
[35] |
HSU C C, CHEN Y Y, TSAI W C, et al. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.[J]. Plant Physiology, 2015, 168: 175-191. doi: 10.1104/pp.114.254599
|
[36] |
RATANASUT K, MONMAI C, PILUK P. Transient hairpin RNAi-induced silencing in floral tissues of Dendrobium Sonia ‘Earsakul’ by agroinfiltration for rapid assay of flower colour modification[J]. Plant Cell Tissue and Organ Culture, 2015, 120(2): 643-654. doi: 10.1007/s11240-014-0632-z
|
[37] |
孟妮, 刘雅莉, 窦雪溪, 等. 蝴蝶兰花瓣瞬时转化体系建立[J]. 西北植物学报, 2018, 38(6): 1017-1023. doi: 10.7606/j.issn.1000-4025.2018.06.1017
|
[38] |
FU Z, WANG L, SHANG H, et al. An R3-MYB gene of Phalaenopsis, MYBx1, represses anthocyanin accumulation[J]. Plant Growth Regulation, 2019, 88(2): 129-138. doi: 10.1007/s10725-020-00595-3
|
[39] |
LIU Y C, YEH C W, CHUNG J D, et al. Petal-specific RNAi-mediated silencing of the phytoene synthase gene reduces xanthophyll levels to generate new Oncidium orchid varieties with white-colour blooms[J]. Plant Biotechnology Journal, 2019, 17(11): 2035-2037. doi: 10.1111/pbi.13179
|
[40] |
YU Z, DONG W, DA SILVA J A T, et al. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana[J]. Protoplasma, 2021, 258(4): 803-815. doi: 10.1007/s00709-020-01599-6
|
[41] |
WANG R, MAO C J, MING F. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid[J]. Plant Science, 2022, 324: 111423. doi: 10.1016/j.plantsci.2022.111423
|
[42] |
YANG K, HOU Y B, WU M, et al. DoMYB5 and DobHLH24, transcription factors involved in regulating anthocyanin accumulation in Dendrobium officinale[J]. International Journal of Molecular Sciences, 2023, 24(8): 7552. doi: 10.3390/ijms24087552
|
[43] |
HOU C J, YANG C H. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition[J]. Plant and Cell Physiology, 2009, 50(8): 1544-1557. doi: 10.1093/pcp/pcp099
|
[44] |
ZHANG J X, WU K L, TIAN L N, et al. Cloning and characterization of a novel CONSTANS-like gene from Phalaenopsis hybrida[J]. Acta Physiologiae Plantarum, 2011, 33(2): 409-417. doi: 10.1007/s11738-010-0560-4
|
[45] |
XIANG L, LI X, QIN D, et al. Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition[J]. Plant Physiology and Biochemistry, 2012, 58: 98-105. doi: 10.1016/j.plaphy.2012.06.011
|
[46] |
HUANG W T, FANG Z M, ZENG S J, et al. Molecular cloning and functional analysis of three FLOWERING LOCUS T (FT) homologous genes from Chinese Cymbidium[J]. International Journal of Molecular Sciences, 2012, 13(9): 11385-11398. doi: 10.3390/ijms130911385
|
[47] |
THIRUVENGADAM M, CHUNG I, YANG C. Overexpression of Oncidium MADS box (OMADS1) gene promotes early flowering in transgenic orchid (Oncidium Gower Ramsey)[J]. Acta Physiologiae Plantarum, 2012, 34(4): 1295-1302. doi: 10.1007/s11738-012-0926-x
|
[48] |
DING L H, WANG Y W, YU H. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile[J]. Plant and Cell Physiology, 2013, 54(4): 595-608. doi: 10.1093/pcp/pct026
|
[49] |
LI D M, LV F B, ZHU G F, et al. Molecular characterization and functional analysis of a Flowering locus T homolog gene from a Phalaenopsis orchid[J]. Genetics and Molecular Research, 2014, 13(3): 5982-5994. doi: 10.4238/2014.August.7.14
|
[50] |
JANG S, CHOI S C, LI H Y, et al. Functional characterization of Phalaenopsis aphrodite flowering genes PaFT1 and PaFD[J]. PLoS One, 2015, 10(8): e0134987. doi: 10.1371/journal.pone.0134987
|
[51] |
黄玮婷, 吴博文, 方中明. 墨兰FT同源基因的时空表达及功能分析[J]. 安徽农业大学学报, 2017, 44(1): 135-141.
|
[52] |
SAWETTALAKE N, BUNNAG S, WANG Y, et al. DOAP1 promotes flowering in the orchid Dendrobium Chao Praya Smile[J]. Frontiers in Plant Science, 2017, 8: 400.
|
[53] |
JIANG L, JIANG X X, LI Y N, et al. FT-like paralogs are repressed by an SVP protein during the floral transition in Phalaenopsis orchid[J]. Plant Cell Reports, 2022, 41(1): 233-248.
|
[54] |
TSAI W C, LEE P F, CHEN H I, et al. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development[J]. Plant and Cell Physiology, 2005, 46(7): 1125-1139. doi: 10.1093/pcp/pci125
|
[55] |
CHEN D, GUO B, HEXIGE S, et al. SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues[J]. Planta, 2007, 226(2): 369-380. doi: 10.1007/s00425-007-0488-0
|
[56] |
CHEN Y Y, LEE P F, HSIAO Y Y, et al. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development[J]. Plant and Cell Physiology, 2012, 53(6): 1053-1067.
|
[57] |
JANG S H. Functional characterization of PhapLEAFY, a FLORICAULA/LEAFY ortholog in Phalaenopsis aphrodite[J]. Plant and Cell Physiology, 2015, 56(11): 2234-2247.
|
[58] |
SU S H, SHAO X Y, ZHU C F, et al. An AGAMOUS-like factor is associated with the origin of two domesticated varieties in Cymbidium sinense (Orchidaceae)[J]. Horticulture Research, 2018, 5: 48. doi: 10.1038/s41438-018-0052-z
|
[59] |
LIN Y J, LI M J, HSING H C, et al. Spike activator 1, encoding a bHLH, mediates axillary bud development and spike initiation in Phalaenopsis aphrodite[J]. International Journal of Molecular Sciences, 2019, 20: 5406. doi: 10.3390/ijms20215406
|
[60] |
WANG Y W, LI Y, YAN X J, et al. Characterization of C- and D-class MADS-Box genes in orchids[J]. Plant Physiology, 2020, 184(3): 1469-1481. doi: 10.1104/pp.20.00487
|
[61] |
CHEN W H, JIANG Z Y, HSU H F, et al. Silencing of FOREVER YOUNG FLOWER-Like genes from Phalaenopsis orchids promotes flower senescence and abscission[J]. Plant and Cell Physiology, 2021, 62(1): 111-124. doi: 10.1093/pcp/pcaa145
|
[62] |
CHEN Y Y, HSIAO Y Y, LI C L, et al. The ancestral duplicated DL/CRC orthologs, PeDL1 and PeDL2, function in orchid reproductive organ innovation[J]. Journal of Experimental Botany, 2021, 72(15): 5442-5461. doi: 10.1093/jxb/erab195
|
[63] |
XU Z, LIU Q, CHEN Y, et al. miR390 family of Cymbidium goeringii is involved in the development of reproductive organs in transgenic Arabidopsis[J]. BMC Plant Biology, 2022, 22(1): 149.
|
[64] |
YANG F X, LU C Q, WEI Y L, et al. Organ-specific gene expression reveals the role of the Cymbidium ensifolium-miR396/growth-regulating factors module in flower development of the orchid plant Cymbidium ensifolium[J]. Frontiers in Plant Science, 2021, 12: 799778.
|
[65] |
YU Z M, HE C M, DA SILVA J A T, et al. Molecular cloning and functional analysis of DoUGE related to water-soluble polysaccharides from Dendrobium officinale with enhanced abiotic stress tolerance[J]. Plant Cell Tissue and Organ Culture, 2017, 131(3): 579-599. doi: 10.1007/s11240-017-1308-2
|
[66] |
HE C M, YU Z M, DA SILVA J A T, et al. DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response[J]. Scientific Reports, 2017, 7: 41010. doi: 10.1038/srep41010
|
[67] |
HE C M, DA SILVA J A T, WANG H B, et al. Mining MYB transcription factors from the genomes of orchids (Phalaenopsis and Dendrobium) and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis[J]. Scientific Reports, 2019, 9: 13818. doi: 10.1038/s41598-019-49812-8
|
[68] |
SI C, DA SILVA J A T, HE C M, et al. DoRWA3 from Dendrobium officinale plays an essential role in acetylation of polysaccharides[J]. International Journal of Molecular Sciences, 2020, 21(17): 6250. doi: 10.3390/ijms21176250
|
[69] |
TSAI T M, CHEN Y R, KAO T W, et al. PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge[J]. Plant Cell Reports, 2007, 26(10): 1899-1908. doi: 10.1007/s00299-007-0389-5
|
[70] |
XU Q, WANG S, HONG H, et al. Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene[J]. BMC Genomics, 2019, 20: 125. doi: 10.1186/s12864-019-5501-z
|
[71] |
ZHANG T T, LI Y X, KANG Y Q, et al. The Dendrobium catenatum DcCIPK24 increases drought and salt tolerance of transgenic Arabidopsis[J]. Industrial Crops and Products, 2022, 187: 115375. doi: 10.1016/j.indcrop.2022.115375
|
[72] |
CUI B L, HUANG M, GUO C D, et al. Cloning and expression analysis of DnMSI1 gene in orchid species[J]. Plant Signaling and Behavior, 2022, 17(1): e2021649. doi: 10.1080/15592324.2021.2021649
|
[73] |
WEI Y L, JIN J P, LIANG D, et al. Genome-wide identification of Cymbidium sinense WRKY gene family and the importance of its group III members in response to abiotic stress[J]. Frontiers in Plant Science, 2022, 13: 969010. doi: 10.3389/fpls.2022.969010
|
[74] |
PENG P H, LIN C H, TSAI H W, et al. Cold response in Phalaenopsis aphrodite and characterization of PaCBF1 and PaICE1[J]. Plant and Cell Physiology, 2014, 55(9): 1623-1635. doi: 10.1093/pcp/pcu093
|
[75] |
KUO S Y, HU C C, HUANG Y W, et al. Argonaute 5 family proteins play crucial roles in the defence against Cymbidium mosaic virus and Odontoglossum ringspot virus in Phalaenopsis aphrodite subsp. formosana[J]. Molecular Plant Pathology, 2021, 22(6): 627-643. doi: 10.1111/mpp.13049
|
[76] |
LI C, CAI X, SHEN Q Y, et al. Genome-wide analysis of basic helix–loop–helix genes in Dendrobium catenatum and functional characterization of DcMYC2 in jasmonate-mediated immunity to Sclerotium delphinii[J]. Frontiers in Plant Science, 2022, 13: 956210. doi: 10.3389/fpls.2022.956210
|
[77] |
YANG S, YU H, XU Y, et al. Investigation of cytokinin-deficient phenotypes in Arabidopsis by ectopic expression of orchid DSCKX1[J]. FEBS Letters, 2003, 555(2): 291-296. doi: 10.1016/S0014-5793(03)01259-6
|
[78] |
TIAN C, LIU S, JIANG L, et al. The expression characteristics of methyl jasmonate biosynthesis-related genes in Cymbidium faberi and influence of heterologous expression of CfJMT in Petunia hybrida[J]. Plant Physiology and Biochemistry, 2020, 151: 400-410. doi: 10.1016/j.plaphy.2020.03.051
|
[79] |
LIU H H, WANG L P, JING X J, et al. Functional analysis of CgWRKY57 from Cymbidium goeringii in ABA response[J]. PeerJ, 2021, 9: e10982. doi: 10.7717/peerj.10982
|
[80] |
XU Z H, LI F L, LI M, et al. Functional analysis of ARF1 from Cymbidium goeringii in IAA response during leaf development[J]. PeerJ, 2022, 10: e13077. doi: 10.7717/peerj.13077
|
[81] |
陈凯, 王灏, 陈燚婷, 等. 铁皮石斛WOX家族基因在生长发育中的功能分析[J]. 遗传, 2023, 45(8): 700-714.
|
[82] |
SUN Y Q, SHEN Y, LI A N, et al. Ectopic expression of Dendrobium EREB5 gene in Arabidopsis influences leaf morphology[J]. In Vitro Cellular and Developmental Biology: Plant, 2014, 50(4): 425-435. doi: 10.1007/s11627-014-9604-6
|
[83] |
GAO J, LIANG D, XU Q, et al. Involvement of CsERF2 in leaf variegation of Cymbidium sinense ‘Dharma’[J]. Planta, 2020, 252(2): 29. doi: 10.1007/s00425-020-03426-x
|
[84] |
LI G Y, CHENG L J, LI Z L, et al. Over-expression of CcMYB24, encoding a R2R3-MYB transcription factor from a high-leaf-number mutant of Cymbidium, increases the number of leaves in Arabidopsis[J]. PeerJ, 2023, 11: e15490. doi: 10.7717/peerj.15490
|
[85] |
YU H, YANG S H, GOH C J. Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1[J]. Plant Cell Reports, 2001, 20: 301-305. doi: 10.1007/s002990100334
|
[86] |
RAFFEINER B, SEREK M, WINKELMANN T. Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1[J]. Plant Cell, 2009, 98(2): 125-134.
|
[87] |
冯莹, 赖钟雄. 石斛兰转ACS反义基因抗性原球茎及转化植株的筛选与鉴定[J]. 西北植物学报, 2013, 33(2): 247-253.
|
[88] |
CHEN J C, LU H C, CHEN C E, et al. The NPR1 ortholog PhaNPR1 is required for the induction of PhaPR1 in Phalaenopsis aphrodite[J]. Botanical Studies, 2013, 54(1): 31. doi: 10.1186/1999-3110-54-31
|
[89] |
LEE S H, LI C W, LIAU C H, et al. Establishment of an Agrobacterium-mediated genetic transformation procedure for the experimental model orchid Erycina pusilla[J]. Plant Cell, 2015, 120(1): 211-220.
|
[90] |
KUI L, CHEN H T, ZHANG W X, et al. Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale[J]. Frontiers in Plant Science, 2016, 7: 2036.
|
[91] |
KHUMKARJORN N, THANONKEO S, YAMADA M, et al. Agrobacterium-mediated transformation of Dendrobium orchid with the flavanone 3-hydroxylase gene[J]. Turkish Journal of Botany, 2017, 41(5): 442-454.
|
[92] |
UTAMI E S W, HARIYANTO S, MANUHARA Y S W. Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera J. J. Sm: An important medicinal orchid[J]. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 703-709. doi: 10.1016/j.jgeb.2018.02.002
|
[93] |
CHEN J, WANG L, CHEN J B, et al. Agrobacterium tumefaciens-mediated transformation system for the important medicinal plant Dendrobium catenatum Lindl[J]. In Vitro Cellular and Development Biology: Plant, 2018, 54(3): 228-239. doi: 10.1007/s11627-018-9903-4
|
[94] |
HSU C C, SU C J, JENG M F, et al. A HORT1 retrotransposon insertion in the PeMYB11 promoter causes harlequin/black flowers in Phalaenopsis orchids[J]. Plant Physiology, 2019, 180(3): 1535-1548. doi: 10.1104/pp.19.00205
|
[95] |
TONG C G, WU F H, YUAN Y H, et al. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes[J]. Plant Biotechnology Journal, 2020, 18(4): 889-891. doi: 10.1111/pbi.13264
|
[96] |
CHEN J, WANG L, LIANG H, et al. Overexpression of DoUGP enhanced biomass and stress tolerance by promoting polysaccharide accumulation in Dendrobium officinale[J]. Frontiers in Plant Science, 2020, 11: 533767.
|
[97] |
FANG S C, CHEN J C, CHANG P Y, et al. Co-option of the SHOOT MERISTEMLESS network regulates protocorm-like body development in Phalaenopsis aphrodite[J]. Plant Physiology, 2022, 190(1): 127-145. doi: 10.1093/plphys/kiac100
|
[98] |
YU H, YANG S H, GOH C J. DOH1, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid[J]. The Plant Cell, 2000, 12(11): 2143-2159. doi: 10.1105/tpc.12.11.2143
|
[99] |
YU H, YANG S H, GOH C J. Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions[J]. Plant Molecular Biology, 2002, 49(2): 225-237. doi: 10.1023/A:1014958118852
|
[100] |
CHAI D, LEE M S, NG H J, et al. L-methionine sulfoximine as a novel selection agent for genetic transformation of orchids[J]. Journal of Biotechnology, 2007, 131(4): 466-472. doi: 10.1016/j.jbiotec.2007.07.951
|
[101] |
LIU X J, CHUANG Y N, CHIOU C Y, et al. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars[J]. Planta, 2012, 236(2): 449-462.
|
[102] |
WANG Y W, LIU L, SONG S Y, et al. DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya Smile[J]. Journal of Experimental Botany, 2017, 68(21/22): 5759-5722.
|
[103] |
ZHOU Z, YING Z, WU Z G, et al. Anthocyanin genes involved in the flower coloration mechanisms of Cymbidium kanran[J]. Frontiers in Plant Science, 2021, 12: 737815. doi: 10.3389/fpls.2021.737815
|
[104] |
KUEHNLE A R, SUGII N. Transformation of Dendrobium orchid using particle bombardment of protocorms[J]. Plant Cell Reports, 1992, 11: 484-488.
|
[105] |
LIAU C H, YOU S J, PRASAD V, et al. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid[J]. Plant Cell Reports, 2003, 21(10): 993-998. doi: 10.1007/s00299-003-0614-9
|
[106] |
柴明良, 金斗焕. 农杆菌介导的蝴蝶兰基因转化系统的建立[J]. 园艺学报, 2004, 34(4): 537-539. doi: 10.16420/j.issn.0513-353x.2004.04.035
|
[107] |
MISHIBA K I, CHIN D P, MII M. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination[J]. Plant Cell Reports, 2005, 24(5): 297-303. doi: 10.1007/s00299-005-0938-8
|
[108] |
CHEN L, KAWAI H, OKU T, et al. Introduction of Odontoglossum ringspot virus coat protein gene into Cymbidium niveo-marginatum mediated by Agrobacterium tumefaciens to produce transgenic plants[J]. Engei Gakkai Zasshi, 2006, 75(3): 249-255. doi: 10.2503/jjshs.75.249
|
[109] |
CHIN D P, MISHIBA K, MII M. Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium[J]. Plant Cell Reports, 2007, 26(6): 735-743.
|
[110] |
张妙彬, 梁擎中, 肖浩, 等. 农杆菌介导石斛兰遗传转化的研究[J]. 园艺学报, 2008, 35(4): 565-570.
|
[111] |
王微, 杨晓伶, 杨婧, 等. 根癌农杆菌介导大花蕙兰遗传转化的研究[J]. 西北植物学报, 2011, 31(1): 27-32.
|
[112] |
崔波, 蒋素华, 牛苏燕, 等. 农杆菌介导蝴蝶兰的遗传转化研究[J]. 河南农业大学学报, 2012, 46(6): 642-645.
|
[113] |
GNASEKARAN P, ANTONY J J J, UDDAIN J, et al. Agrobacterium-mediated transformation of recalcitrant Vanda Kasem’s Delight orchid with higher efficiency[J]. The Scientific World Journal, 2014, 2: 1-10.
|
[114] |
谢利, 王芬, 曾瑞珍, 等. 农杆菌介导的墨兰遗传转化[J]. 生物工程学报, 2015, 31(4): 542-551.
|
[115] |
PHLAETITA W, CHIN D P, TOKUHARA K, et al. Agrobacterium-mediated transformation of protocorm-like bodies in Dendrobium Formidible ‘Ugusu’[J]. Plant Biotechnology, 2015, 32(3): 225-231.
|
[116] |
PHLAETITA W, CHIN D P, OTANG N V, et al. High efficiency Agrobacterium-mediated transformation of Dendrobium orchid using protocorms as a target material[J]. Plant Biotechnology, 2015, 32(4): 323-327. doi: 10.5511/plantbiotechnology.15.0804a
|
[117] |
HSING H X, LIN Y J, TONG C G, et al. Efficient and heritable transformation of Phalaenopsis orchids[J]. Botanical Studies, 2016, 57: 30. doi: 10.1186/s40529-016-0146-6
|
[118] |
王昊, 邓柠檬, 张雅文等. 金钗石斛转基因体系的建立[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 62-68.
|
[119] |
SORNCHAI P, DOORN W G V, IMSABAI W, et al. Dendrobium orchids carrying antisense ACC oxidase: Small changes in flower morphology and a delay of bud abortion, flower senescence, and abscission of flowers[J]. Transgenic Research, 2020, 29(4): 429-442. doi: 10.1007/s11248-020-00209-8
|
[120] |
MEN S, MING X, WANG Y, et al. Genetic transformation of two species of orchid by biolistic bombardment[J]. Plant Cell Reports, 2003, 21(6): 592-598. doi: 10.1007/s00299-002-0559-4
|
[121] |
TEE C, MARZIAH M, TAN C, et al. Evaluation of different promoters driving the GFP reporter gene and selected target tissues for particle bombardment of Dendrobium Sonia 17[J]. Plant Cell Reports, 2003, 21(5): 452-458.
|
[122] |
LIAO L J, PAN I C, CHAN Y L, et al. Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium mosaic virus is a manifestation of RNA-mediated resistance[J]. Molecular Breeding, 2004, 13(3): 229-242. doi: 10.1023/B:MOLB.0000022527.68551.30
|
[123] |
CHANG C, CHEN Y C, HSU Y H, et al. Transgenic resistance to Cymbidium mosaic virus in Dendrobium expressing the viral capsid protein gene[J]. Transgenic Research, 2005, 14(1): 41-46. doi: 10.1007/s11248-004-2373-y
|
[124] |
CHAN Y L, LIN K H, SANJAYA, et al. Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack[J]. Transgenic Research, 2005, 14(3): 279-288.
|
[125] |
SUWANAKETCHANATIT C, PILUEK J, PEYACHOKNAGUL S, et al. High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment[J]. Biologia Plantarum, 2007, 51(4): 720-727. doi: 10.1007/s10535-007-0148-z
|
[126] |
TEE S C, MAZIAH M, TAN S C, et al. Selection of co-transformed Dendrobium Sonia 17 using hygromycin and green fluorescent protein[J]. Biologia Plantarum, 2011, 55(3): 572-576. doi: 10.1007/s10535-011-0128-1
|
[127] |
KANCHANAPOOM K, NAKKAEW A, KANCHANAPOOM K, et al. Efficient biolistic transformation and regeneration capacity of an EgTCTP transgene in protocorm-like bodies of Phalaenopsis orchid[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40(1): 58-64. doi: 10.15835/nbha4017256
|
[128] |
刘其府, 董会, 曾宋君, 等. 农杆菌子房注射法对金钗石斛的活体转化研究[J]. 华南农业大学学报, 2013, 34(3): 378-382. doi: 10.7671/j.issn.1001-411X.2013.03.019
|
[129] |
张莉, 王佳, 郑枫, 等. 子房注射法转化‘紫宝石’蝴蝶兰的研究[J]. 热带作物学报, 2018, 39(4): 669-674.
|
[130] |
TSAY H S, HO H M, GUPTA S K, et al. Development of pollen mediated activation tagging system for Phalaenopsis and Doritaenopsis[J]. Electronic Journal of Biotechnology, 2012, 15(4): 9.
|
[131] |
WANG R R, YU L, KUANG P, et al. Transfer of the Arabidopsis CBF1, a cold-induced transcription activator, into Phalaenopsis via pollen-tube pathway[J]. Phyton-Annales Rei Botanicae, 2022, 62/63: 87-96.
|
[132] |
XUE D W, FENG S G, ZHAO H Y, et al. The linkage maps of Dendrobium species based on RAPD and SRAP markers[J]. Journal of Genetics and Genomics, 2010, 37(3): 197-204. doi: 10.1016/S1673-8527(09)60038-2
|
[133] |
LU J J, WANG S, ZHAO H Y, et al. Genetic linkage map of EST-SSR and SRAP markers in the endangered Chinese endemic herb Dendrobium (Orchidaceae)[J]. Genetics and Molecular Research, 2012, 11(4): 4654-4667. doi: 10.4238/2012.December.21.1
|
[134] |
FENG S G, ZHAO H Y, LU J J, et al. Preliminary genetic linkage maps of Chinese herb Dendrobium nobile and D. moniliforme[J]. Journal of Genetics, 2013, 92(2): 205-212. doi: 10.1007/s12041-013-0246-y
|
[135] |
LU J, LIU Y, XU J, et al. High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium (Orchidaceae)[J]. Frontiers in Plant Science, 2018, 9: 398. doi: 10.3389/fpls.2018.00398
|
[136] |
LI J, XU Y, WANG Z. Construction of a high-density genetic map by RNA sequencing and eQTL analysis for stem length and diameter in Dendrobium ( Dendrobium nobile × Dendrobium wardianum )[J]. Industrial Crops and Products, 2019, 128: 48-54. doi: 10.1016/j.indcrop.2018.10.073
|
[137] |
XU S P, LIAO F X. A genetic linkage map of Phalaenopsis-based on AFLP markers and the two-way pseudo-testcross mapping strategy[J]. International Journal of Agriculture and Biology, 2017, 19(3): 551-557. doi: 10.17957/IJAB/15.0333
|
[138] |
HSU C C, CHEN S Y, CHIU S Y, et al. High-density genetic map and genome-wide association studies of aesthetic traits in Phalaenopsis orchids[J]. Scientific Reports, 2022, 12: 3346. doi: 10.1038/s41598-022-07318-w
|
[139] |
LI D M, ZHU G F. High-density genetic linkage map construction and QTLs identification associated with four leaf-related traits in lady’s slipper orchids (Paphiopedilum concolor × Paphiopedilum hirsutissimum)[J]. Horticulturae, 2022, 8(9): 842. doi: 10.3390/horticulturae8090842
|
[140] |
王健, 乐超银, 谢伟, 等. 兰花香味相关基因的RAPD分子标记[J]. 江苏农业科学, 2006, 34(5): 78-79. doi: 10.15889/j.issn.1002-1302.2006.05.030
|
[141] |
刘泽强. 大花蕙兰标记辅助选择育种技术体系的建立[D]. 广州: 华南农业大学, 2009.
|
[142] |
李晓红. 兰花花香花色基因鉴定和分子标记辅助花色选择技术研究[D]. 广州: 华南农业大学, 2020.
|
[143] |
肖文芳, 李佐, 陈和明, 等. 基于SLAF-BSA技术的蝴蝶兰花底色关联SNP分子标记开发与验证[J]. 中国农业大学学报, 2021, 26(9): 92-100.
|