• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHANG Deyu, CHALI Biru Alemu, PHYU Phyu Thin, et al. Aerobic adaptability identification and comprehensive evaluation of upland rice at early seedling stage[J]. Journal of South China Agricultural University, 2023, 44(6): 915-924. DOI: 10.7671/j.issn.1001-411X.202308020
Citation: ZHANG Deyu, CHALI Biru Alemu, PHYU Phyu Thin, et al. Aerobic adaptability identification and comprehensive evaluation of upland rice at early seedling stage[J]. Journal of South China Agricultural University, 2023, 44(6): 915-924. DOI: 10.7671/j.issn.1001-411X.202308020

Aerobic adaptability identification and comprehensive evaluation of upland rice at early seedling stage

More Information
  • Received Date: August 27, 2023
  • Available Online: November 12, 2023
  • Published Date: October 15, 2023
  • Objective 

    The goal was to identify the aerobic adaptation of early seedlings of upland rice germplasm resources, screen out the superior germplasm resources with the abilities of seed germination under low water stress and seedling emergence from deep soil, and provide genetic materials and valuable guidance for breeding new viarieties with excellent aerobic adaptation.

    Method 

    Under the conditions of 150 g/L polyethylene glycol (PEG6000) mimicking low water stress and 8 cm soil deep-seeding, 24 lowland rice (including ‘Huanghuazhan’, ‘longjing39’ and ‘jingyue1’) and 24 improved upland rice (including ‘Luying46’,‘IRAT318’ and ‘IRAT11’) varieties were used to evaluate the aerobic adaptability indicators. In addition, these indicators were assessed for 246 upland rice landraces. The principal component analysis, membership function and comprehensive evaluation value of aerobic adaptation were used to evaluate these germplasms, and they were classified by cluster analysis.

    Result 

    The relative germination potential, germination rate, root length, bud length and root number between lowland and upland rice varieties under low water stress were significantly different, and could be used as indicators for identifying aerobic adaptation at the early seedling stage. Under deep-seeding condition, root length, shoot length, mesocotyl length and coleoptile length were mainly responsible for seedling emergence. According to their differences in aerobic adaptability, the germplasms could be divided into five types, including highly strong type (type Ⅰ), strong type (type Ⅱ), intermediate type (type Ⅲ), weak type (type Ⅳ) and extremely weak type (type Ⅴ). Finally, seven varieties with elite aerobic adaptability were obtained.

    Conclusion 

    This study identified the indicators of aerobic adaptation and comprehensively assessed the upland rice landraces in Yunan, which could provide a basis for fostering dry direct-seeding rice varieties.

  • [1]
    XIAO N, PAN C, LI Y, et al. Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice[J]. Genome Biology, 2021, 22: 283. doi: 10.1186/s13059-020-02207-9
    [2]
    LYU J, LI B, HE W, et al. A genomic perspective on the important genetic mechanisms of upland adaptation of rice[J]. BMC Plant Biology, 2014, 14(1): 1-16. doi: 10.1186/1471-2229-14-1
    [3]
    XIA H, HUANG W, XIONG J, et al. Adaptive epigenetic differentiation between upland and lowland rice ecotypes revealed by methylation-sensitive amplified polymorphism[J]. PLoS One, 2016, 11(7): e0157810. doi: 10.1371/journal.pone.0157810
    [4]
    彭永康, 林绪创. 世界旱稻生产[J]. 世界农业, 1984, 2: 24-25.
    [5]
    CHANG T T. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices[J]. Euphytica, 1976, 25(1): 425-441. doi: 10.1007/BF00041576
    [6]
    XU P, YANG J, MA Z, et al. Identification and validation of aerobic adaptation QTLs in upland rice[J]. Life, 2020, 10(5): 65. doi: 10.3390/life10050065
    [7]
    SATO Y. The Indica Japonica differentiation of rice cultivars in Thailand and its neighbouring countries[C]//Kasetsart University. Proceedings of the New Frontier Breeding Researches Proc 5th SABRAO Intern Congress. Bangkok: Kasetsart University, 1986: 185-193.
    [8]
    LUO Z, XIA H, BAO Z, et al. Integrated phenotypic, phylogenomic, and evolutionary analyses indicate the earlier domestication of Geng upland rice in China[J]. Molecular Plant, 2022, 15(10): 1506-1509. doi: 10.1016/j.molp.2022.09.011
    [9]
    BOUMAN B. Water-efficient management strategies in rice production[J]. International Rice Research Notes, 2001, 16(2): 17-22.
    [10]
    MATSUO N, OZAWA K, MOCHIZUKI T. Physiological and morphological traits related to water use by three rice (Oryza sativa L. ) genotypes grown under aerobic rice systems[J]. Plant and Soil, 2010, 335: 349-361. doi: 10.1007/s11104-010-0423-1
    [11]
    SUN X, XIONG H, JIANG C, et al. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communications, 2022, 13(1): 4265. doi: 10.1038/s41467-022-31844-w
    [12]
    GAO J, ZHAO Y, ZHAO Z, et al. RRS1 shapes robust root system to enhance drought resistance in rice[J]. The New Phytologist, 2023, 238(3): 1146-1162. doi: 10.1111/nph.18775
    [13]
    GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. doi: 10.1126/science.aaz7614
    [14]
    LUO L, MEI H, YU X, et al. Water-saving and drought-resistance rice: From the concept to practice and theory[J]. Molecular Breeding, 2019, 39: 1-15. doi: 10.1007/s11032-018-0907-x
    [15]
    罗利军. 节水抗旱稻的概念与发展历程[J]. 上海农业学报, 2022, 38(4): 1-8.
    [16]
    PURWANTO E, SAMANHUDI S, EFFENDI Y. Response of some upland rice varieties to drought stress[J]. International Journal of Tropical Drylands, 2017, 1(2): 69-77. doi: 10.13057/tropdrylands/t010202
    [17]
    李自超, 刘文欣, 赵笃乐. PEG胁迫下水、陆稻幼苗生长势比较研究[J]. 中国农业大学学报, 2001, 6(3): 16-20.
    [18]
    胡德勇, 姚帮松, 孙松林, 等. 不同水分处理对巴西陆稻IAPAR9种子萌发的影响[J]. 江西农业大学学报, 2005, 27(6): 822-825.
    [19]
    徐建欣, 杨洁, 胡祥伟, 等. 云南陆稻芽期抗旱性鉴定指标筛选及其综合评价[J]. 西南农业学报, 2015, 28(4): 1455-1464.
    [20]
    LIAN H L, YU X, YE Q, et al. The role of aquaporin RWC3 in drought avoidance in rice[J]. Plant and Cell Physiology, 2004, 45(4): 481-489. doi: 10.1093/pcp/pch058
    [21]
    WANG H, XU X, ZHAN X, et al. Identification of qRL7, a major quantitative trait locus associated with rice root length in hydroponic conditions[J]. Breeding Science, 2013, 63(3): 267-274. doi: 10.1270/jsbbs.63.267
    [22]
    ZHANG H, MA P, ZHAO Z, et al. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length[J]. Theoretical and Applied Genetics, 2012, 124: 223-232. doi: 10.1007/s00122-011-1700-y
    [23]
    FRÖHLICH M, KUTSCHERA U. Changes in soluble sugars and proteins during development of rye coleoptiles[J]. Journal of Plant Physiology, 1995, 146(1/2): 121-125. doi: 10.1016/S0176-1617(11)81977-2
    [24]
    YASUE T, FUJII K. Studies on the elongation of mesocotyl and coleoptile in gramineous crops: I. On the elongation ratio of mesocotyl and coleoptile[J]. Japanese Journal of Crop Science, 1979, 48(3): 356-364. doi: 10.1626/jcs.48.356
    [25]
    SUGE H, NISHIZAWA T, TAKAHASHI H, et al. Phenotypic plasticity of internode elongation stimulated by deep-seeding and ethylene in wheat seedlings[J]. Plant, Cell and Environment, 1997, 20(7): 961-964.
    [26]
    TURNER F, CHEN C, BOLLICH C. Coleoptile and mesocotyl lengths in semidwarf rice seedlings[J]. Crop Science, 1982, 22(1): 43-46. doi: 10.2135/cropsci1982.0011183X002200010010x
    [27]
    DILDAY R, MGONJA M, AMONSILPA S, et al. Plant height vs. mesocotyl and coleoptile elongation in rice: Linkage or pleitropism?[J]. Crop Science, 1990, 30(4): 815-818. doi: 10.2135/cropsci1990.0011183X003000040010x
    [28]
    张光恒, 林建荣, 吴明国, 等. 水稻出苗顶土动力源研究[J]. 中国水稻科学, 2005, 19(1): 59-62.
    [29]
    马殿荣, 王楠, 王莹, 等. 中国北方杂草稻深覆土条件下出苗动力源分析[J]. 中国水稻科学, 2008, 22(2): 215-218.
    [30]
    杨庆. 不同播种深度对水稻苗期形态特征的影响[J]. 黑龙江农业科学, 2016(6): 7-10.
    [31]
    LIU H, ZHAN J, LI J, et al. Genome-wide association study (GWAS) for mesocotyl elongation in rice (Oryza sativa L.) under multiple culture conditions[J]. Genes, 2019, 11(1): 49. doi: 10.3390/genes11010049
    [32]
    刘畅孟, 刘金栋, 王雅美, 等. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044.
    [33]
    YANG W, XU D, LI S, et al. Emergence and seedling establishment of rice varieties at different sowing depths[J]. Journal of Plant Growth Regulation, 2022, 41(4): 1672-1686. doi: 10.1007/s00344-021-10408-0
    [34]
    戴陆园, 王平盛, 叶昌荣, 等. 云南省农作物遗传资源现状[J]. 云南植物研究, 2001(S1): 22-27.
    [35]
    汤翠凤, 张恩来, 董超, 等. 云南新收集水稻地方品种的表型多样性分析[J]. 植物遗传资源学报, 2018, 19(6): 1106-1116.
    [36]
    袁杰, 王奉斌, 贾春平, 等. 新疆主栽粳稻品种芽期抗旱性鉴定[J]. 分子植物育种, 2019, 17(16): 5398-5405.
    [37]
    龚明. 作物抗旱性鉴定方法与指标及其综合评价[J]. 云南农业大学学报, 1989, 4(1): 73-81.
    [38]
    XIA H, LUO Z, XIONG J, et al. Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity[J]. Molecular Plant, 2019, 12(2): 170-184. doi: 10.1016/j.molp.2018.12.011
    [39]
    徐鹏. 陆稻陆生适应性相关性状遗传解析[D]. 北京: 中国农业大学, 2020.
    [40]
    杨君. 调控陆稻陆生适应性功能基因的挖掘与解析[D]. 北京: 中国科学院大学, 2020.
    [41]
    MUSCOLO A, SIDARI M, ANASTASI U, et al. Effect of PEG-induced drought stress on seed germination of four lentil genotypes[J]. Journal of Plant Interactions, 2014, 9(1): 354-363. doi: 10.1080/17429145.2013.835880
    [42]
    杨瑰丽, 杨美娜, 李帅良, 等. 水稻萌芽期抗旱指标筛选与抗旱性综合评价[J]. 华南农业大学学报, 2015, 36(2): 1-5.
    [43]
    李其勇, 朱从桦, 李星月, 等. 水稻近等基因导入系芽期抗旱性鉴定及抗旱指标筛选[J]. 核农学报, 2021, 35(1): 192-201. doi: 10.11869/j.issn.100-8551.2021.01.0192
    [44]
    丁国华, 马殿荣, 杨光, 等. 聚乙二醇模拟干旱胁迫对杂草稻发芽特性的影响[J]. 沈阳农业大学学报, 2013, 44(6): 721-726.
    [45]
    LONDO J P, CHIANG Y C, HUNG K H, et al. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(25): 9578-9583. doi: 10.1073/pnas.0603152103
    [46]
    MCNALLY K L, CHILDS K L, BOHNERT R, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12273-12278. doi: 10.1073/pnas.0900992106
    [47]
    PHULE A S, BARBADIKAR K M, MAGANTI S M, et al. RNA-seq reveals the involvement of key genes for aerobic adaptation in rice[J]. Scientific Reports, 2019, 9: 5235. doi: 10.1038/s41598-019-41703-2
    [48]
    PRICE A, COURTOIS B. Mapping QTLs associated with drought resistance in rice: progress, problems and prospects[J]. Plant Growth Regulation, 1999, 29: 123-133. doi: 10.1023/A:1006255832479
    [49]
    ZHAO Y, ZHAO W, JIANG C, et al. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS[J]. Frontiers in Plant Science, 2018, 9: 332. doi: 10.3389/fpls.2018.00332
    [50]
    LEE H S, SASAKI K, KANG J W, et al. Mesocotyl elongation is essential for seedling emergence under deep-seeding condition in rice[J]. Rice, 2017, 10(1): 1-11. doi: 10.1186/s12284-016-0141-2

Catalog

    Article views (561) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return