Citation: | CHEN Zhixiong, WANG Lan, WU Jinwen, et al. Research progress in favorable gene mining and innovation of Ting’s rice germplasm[J]. Journal of South China Agricultural University, 2023, 44(5): 649-658. DOI: 10.7671/j.issn.1001-411X.202307016 |
Rice germplasm provides an important fundation for biological breeding. The total number of rice germplasm preserved in China exceeds 90000, among which Ding’s rice germplasm is a unique category. The Ding’s rice germplasm mainly included over 7000 cultivated rice varieties collected by DING Ying in various regions from 1920s to 1930s, 2 000 wild rice lines collected by LU Yonggen in the 1990s, the newly-devolped neo-tetraploid rice germplasm, and so on. This article summarized the research progress of Ding’s rice germplasm in the past 20 years and proposed the key subjects in future research, with the aim of providing a reference for better utilization of this germplasm in rice breeding.
[1] |
KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant Molecular Biology, 2005, 59(1): 1-6. doi: 10.1007/s11103-005-2159-5
|
[2] |
GODFRAY H C, BEDDINGTON J R, CRUTE I R, et al. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818. doi: 10.1126/science.1185383
|
[3] |
吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. doi: 10.16288/j.yczz.18-213
|
[4] |
李晓玲, 李金泉, 卢永根. 水稻核心种质的构建策略研究[J]. 沈阳农业大学学报, 2007, 38(5): 681-687. doi: 10.3969/j.issn.1000-1700.2007.05.007
|
[5] |
李自超, 张洪亮, 曹永生, 等. 中国地方稻种资源初级核心种质取样策略研究[J]. 作物学报, 2003, 29(1): 20-24. doi: 10.3321/j.issn:0496-3490.2003.01.004
|
[6] |
李晓玲. 栽培稻种质资源核心种质构建的研究[D]. 广州: 华南农业大学, 2006.
|
[7] |
ZHANG P, LI J Q, LI X L, et al. Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers[J]. PLoS One, 2011, 6(12): e27565. doi: 10.1371/journal.pone.0027565
|
[8] |
ZHANG P, ZHONG K Z, ZHONG Z Z, et al. Genome-wide association study of important agronomic traits within a core collection of rice (Oryza sativa L. )[J]. BMC Plant Biology, 2019, 19: 259. doi: 10.1186/s12870-019-1842-7.
|
[9] |
SONG J Y, LI J Q, SUN J, et al. Genome-wide association mapping for cold tolerance in a core collection of rice (Oryza sativa L.) landraces by using high-density single nucleotide polymorphism markers from specific-locus amplified fragment sequencing[J]. Frontiers in Plant Science, 2018, 9: 875. doi: 10.3389/fpls.2018.00875.
|
[10] |
FU D, ZHONG K Z, ZHONG Z Z, et al. Genome-wide association study of sheath blight resistance within a core collection of rice (Oryza sativa L. )[J]. Agronomy, 2022, 12(7): 1493. doi: 10.3390/agronomy12071493.
|
[11] |
ZHANG P, ZHONG K Z, TONG H H, et al. Association mapping for aluminum tolerance in a core collection of rice landraces[J]. Frontiers in Plant Science, 2016, 7: 1415. doi: 10.3389/fpls.2016.01415.
|
[12] |
ZHAO M H, SONG J Y, WU A T, et al. Mining beneficial genes for aluminum tolerance within a core collection of rice landraces through genome-wide association mapping with high density SNPs from specific-locus amplifified fragment sequencing[J]. Frontier in Plant Science, 2018, 9: 1838. doi: 10.3389/fpls.2018.01838.
|
[13] |
ZHANG P, ZHONG K Z, ZHONG Z Z, et al. Mining candidate gene for rice aluminum tolerance through genome wide association study and transcriptomic analysis[J]. BMC Plant Biology, 2019, 19(1): 490. doi: 10.1186/s12870-019-2036-z.
|
[14] |
ZHONG K Z, XIE L H, HU S K, et al. Genome-wide association study of zinc toxicity tolerance within a rice core collection (Oryza sativa L. )[J]. Plants, 2022, 11(22): 3138. doi: 10.3390/plants11223138.
|
[15] |
SHAHID M Q, CHEN F Y, LI H Y, et al. Double-neutral genes, Sa-n and Sb-n, for pollen fertility in rice to overcome indica × japonica hybrid sterility[J]. Crop Science, 2013, 53(1): 164-176. doi: 10.2135/cropsci2012.07.0451
|
[16] |
杨有新, 吴锦文, 陈志雄, 等. 基于功能性标记和测序发掘携带有S 5 n基因的水稻新种质[J]. 科学通报, 2009, 54(15): 2212-2218.
|
[17] |
李宏岩, 王思哲, SHAHID M Q, 等. 从携带S 5 n基因的水稻种质中发掘S a n、S b n和S c n基因[J]. 作物学报, 2013, 39(8): 1366-1376.
|
[18] |
张欢欢, 刘蕊, 郭海滨, 等. 药用野生稻有利基因发掘与利用研究进展[J]. 中国农学通报, 2009, 25(19): 42-45.
|
[19] |
潘小芬. 药用野生稻TAC文库的构建[D]. 广州: 华南农业大学, 2006.
|
[20] |
汪暖, 陈志雄, 刘蕊, 等. 药用野生稻TAC克隆转化籼稻的体系初探[J]. 植物生理学通讯, 2010, 46(3): 217-222.
|
[21] |
刘蕊, 张欢欢, 陈志雄, 等. 筛选和转化药用野生稻TAC克隆获得耐旱水稻[J]. 中国农业科学, 2014, 47(8): 1445-1457. doi: 10.3864/j.issn.0578-1752.2014.08.001
|
[22] |
LIU R, ZHANG H H, CHEN Z X, et al. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone[J]. Genetics and Molecular Research, 2015, 14(4): 13667-13678. doi: 10.4238/2015.October.28.29
|
[23] |
李培纲, 李红梅, 张帅, 等. 药用野生稻ADF基因的克隆及其抗逆性分析[J]. 华北农学报, 2017, 32(6): 37-44. doi: 10.7668/hbnxb.2017.06.006
|
[24] |
卢永根, 刘向东, 陈雄辉. 广东高州普通野生稻的研究进展[J]. 植物遗传资源学报, 2008, 9(1): 1-5. doi: 10.13430/j.cnki.jpgr.2008.01.012
|
[25] |
王兰, 蔡东长. 高州普通野生稻苗期耐寒性鉴定及其SSR多态标记分析[J]. 华北农学报, 2011, 26(6): 12-15. doi: 10.7668/hbnxb.2011.06.003
|
[26] |
LIU W, GHOURI F, YU H, et al. Genome wide re-sequencing of newly developed rice lines from common wild rice (Oryza rufipogon Griff. ) for the identification of NBS-LRR genes[J]. PLoS One, 2017, 12(7): e0180662. doi: 10.1371/journal.pone.0180662
|
[27] |
YU H, SHAHID M Q, LI R B, et al. Genome-wide analysis of genetic variations and the detection of rich variants of NBS-LRR encoding genes in common wild rice lines[J]. Plant Molecular Reporter, 2018, 36(4): 618-630. doi: 10.1007/s11105-018-1103-1
|
[28] |
CHEN J J, DING J H, OUYANG Y D, et al. A triallelic system of S 5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11436-11441.
|
[29] |
魏常敏, 王兰, 杨有新, 等. 普通野生稻中S 5 n基因的鉴定及其胚囊育性研究[J]. 科学通报, 2010, 55(11): 1007-1014.
|
[30] |
TONG J F, LI Y H, YANG Y X, et al. Molecular evolution of rice S 5 n and functional comparison among different sequences[J]. Grop Germplasm Resources, 2011, 56(19): 2016-2024.
|
[31] |
PENG H, SHAHID M Q, LI Y H, et al. Molecular evolution of S 5 locus and large differences in its coding region revealed insignificant effect on indica × japonica embryo sac fertility[J]. Plant Systematics and Evolution, 2015, 301(2): 639-655. doi: 10.1007/s00606-014-1102-0
|
[32] |
史磊刚, 刘向东, 刘博, 等. 从普通野生稻中鉴定栽培稻F1花粉不育座位S b的中性基因[J]. 科学通报, 2009, 54(19): 2967-2974.
|
[33] |
LIU B, LI J Q, SHAHID M Q, et al. Identification of neutral genes at pollen sterility loci S d and S e of cultivated rice (Oryza sativa) with wild rice (O. rufipogon) origin[J]. Genetics and Molecular Research, 2011, 10(4): 3435-3445. doi: 10.4238/2011.October.31.10
|
[34] |
LI J Q, SHAHID M Q, FENG J H, et al. Identification of neutral alleles at pollen sterility gene loci cultivated rice (Oryza sativa L.) from wild rice (O. rufipogon Griff.)[J]. Plant Systematics and Evolution, 2012, 298(1): 33-42. doi: 10.1007/s00606-011-0520-5
|
[35] |
杨培周, 郭海滨, 赵杏娟, 等. 广东高州普通野生稻生殖特性的研究[J]. 植物遗传资源学报, 2006, 7(2): 136-143. doi: 10.3969/j.issn.1672-1810.2006.02.002
|
[36] |
练子贤, 魏常敏, 卢永根, 等. 广东高州普通野生稻与粳稻杂交F1胚囊育性及发育特点[J]. 中国水稻科学, 2008, 22(3): 266-272. doi: 10.3321/j.issn:1001-7216.2008.03.008
|
[37] |
ZHANG L S, SHIVUTE F N, SHAHID M Q, et al. In vitro induction of auto-allotetraploid in a newly developed wild rice line from Oryza alta Swallen[J]. Plant Cell, Tissue and Organ Culture, 2019, 139(3): 577-587. doi: 10.1007/s11240-019-01701-8
|
[38] |
FU X L, LU Y G, LIU X D, et al. Cytological mechanisms of interspecific incrossability and hybrid sterility between Oryza sativa L. and O. alta Swallen[J]. Chinese Science Bulletin, 2007, 52(6): 755-765. doi: 10.1007/s11434-007-0138-8
|
[39] |
傅雪琳, 刘向东, 卢永根. 亚洲栽培稻与短花药野生稻种间杂交障碍观察[J]. 华南农业大学学报, 2013, 34(3): 287-291. doi: 10.7671/j.issn.1001-411X.2013.03.002
|
[40] |
FU X L, LU Y G, LIU X D, et al. Cytological behavior of hybridization barriers between Oryza sativa and Oryza officinalis[J]. Agricultural Sciences in China, 2011, 10(10): 1489-1500. doi: 10.1016/S1671-2927(11)60143-0
|
[41] |
褚绍尉, 王林, 刘桂富, 等. 广东高州普通野生稻耐铝性及其QTL定位[J]. 华北农学报, 2013, 28(3): 12-18. doi: 10.3969/j.issn.1000-7091.2013.03.003
|
[42] |
王兰, 李智, 郑杏梅, 等. 普通野生稻矮化突变体的株高与分蘖基因的QTL定位及主效基因的遗传分析[J]. 华北农学报, 2014, 29(5): 5-9. doi: 10.7668/hbnxb.2014.05.002
|
[43] |
郑跃滨, 李智, 赵海燕, 等. 水稻粒长QTL定位与主效基因的遗传分析[J]. 西北植物学报, 2020, 40(4): 598-604. doi: 10.7606/j.issn.1000-4025.2020.04.0598
|
[44] |
WANG L, LIU Y, ZHAO H Y, et al. Identification of qGL3.5, a novel locus controlling grain length in rice through bulked segregant analysis and fine mapping[J]. Frontiers in Plant Science, 2022, 13: 921029. doi: 10.3389/fpls.2022.921029.
|
[45] |
BAI F, MA H J, CAI Y C, et al. Natural allelic variation in GRAIN SIZE AND WEIGHT 3 of wild rice regulates the grain size and weight[J/OL]. Plant Physiology, (2023-06-24) [2023-07-30]. 2023. doi: 10.1093/plphys/kiad320.
|
[46] |
张华华, 冯九焕, 卢永根, 等. 利用激光扫描共聚焦显微镜观察同源四倍体水稻胚囊的形成与发育[J]. 电子显微学报, 2003, 22(5): 380-384. doi: 10.3969/j.issn.1000-6281.2003.05.006
|
[47] |
王兰, 刘向东, 卢永根, 等. 同源四倍体水稻胚乳发育: 极核融合和胚乳细胞化[J]. 中国水稻科学, 2004, 18(4): 281-289. doi: 10.3321/j.issn:1001-7216.2004.04.001
|
[48] |
王兰, 刘向东, 卢永根, 等. 同源四倍体水稻胚乳发育: 糊粉层乳淀粉积累及胼胝质“套”的形成[J]. 中国水稻科学, 2004, 18(6): 507-514. doi: 10.3321/j.issn:1001-7216.2004.06.007
|
[49] |
郭海滨, 卢永根, 冯九焕, 等. 利用激光扫描共聚焦显微术对同源四倍体水稻胚囊形成与发育的进一步观察[J]. 激光生物学报, 2006, 15(2): 111-117. doi: 10.3969/j.issn.1007-7146.2006.02.001
|
[50] |
HE J H, SHAHID M Q, LI Y J, et al. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in inter-subspecific autotetraploid rice hybrids[J]. Journal of Experimental Botany, 2011, 62(13): 4433-4445. doi: 10.1093/jxb/err098
|
[51] |
WU J W, SHAHID M Q, GUO H B, et al. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice[J]. Plant Reproduction, 2014, 27(4): 181-196. doi: 10.1007/s00497-014-0250-2
|
[52] |
HU C Y, ZENG Y X, LU Y G, et al. High embryo sac fertility and diversity of abnormal embryo sacs detected in autotetraploid indica/japonica hybrids in rice by whole-mount eosin B-staining confocal laser scanning microscopy[J]. Plant Breeding, 2009, 128(2): 187-192. doi: 10.1111/j.1439-0523.2008.01555.x
|
[53] |
CHEN L, SHAHID M Q, WU J, et al. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice[J]. Molecular Genetics and Genomics, 2018, 293(6): 1407-1420. doi: 10.1007/s00438-018-1471-0
|
[54] |
LI X, YU H, JIAO Y M, et al. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice[J]. PLoS One, 2018, 13(8): e0201854. doi: 10.1371/journal.pone.0201854
|
[55] |
LI X, SHAHID M Q, WU J W, et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. International Journal of Molecular Sciences, 2016, 17(4): 499. doi: 10.3390/ijms17040499.
|
[56] |
LI X, SHAHID M Q, XIA J, et al. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice[J]. BMC Genomics, 2017, 18: 129. doi: 10.1186/s12864-017-3526-8.
|
[57] |
LI X, SHAHID M Q, WEN M S, et al. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice[J]. BMC Plant Biology, 2020, 20(1): 82. doi: 10.1186/s12870-020-2290-0.
|
[58] |
GUO H B, MENDRIKAHY J N, XIE L, et al. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis[J]. Scientific Reports, 2017, 7: 40139. doi: 10.1038/srep40139.
|
[59] |
刘向东, 吴锦文, 陆紫君, 等. 同源四倍体水稻: 低育性机理、改良与育种展望[J/OL]. 遗传, (2023-06-28)[2023-07-30]. https://kns.cnki.net/kcms2/detail/11.1913.R.20230626.2143.002.html.
|
[60] |
CHEN L, YUAN Y, WU J W, et al. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes[J]. Rice, 2019, 12: 34. doi: 10.1186/s12284-019-0294-x.
|
[61] |
GHALED M A A, LI C, SHAHID M Q, et al. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles[J]. BMC Plant Biology, 2020, 20(1): 83. doi: 10.1186/s12870-020-2291-z.
|
[62] |
张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. doi: 10.16288/j.yczz.19-105
|
[63] |
LIN S J, LIU Z P, ZHANG K, et al. GL9 from Oryza glumaepatula controls grain size and chalkiness in rice[J]. Crop Journal, 2023, 11(1): 198-207. doi: 10.1016/j.cj.2022.06.006
|
[64] |
ZHAO H Y, FU Y, ZHANG G Q, et al. GS6.1 controls kernel size and plant architecture in rice[J]. Planta, 2023, 258(2): 42. doi: 10.1007/s00425-023-04201-4.
|
[65] |
ZHAN P L, MA S P, XIAO Z L, et al. Natural variations in grain length 10 (GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. doi: 10.1016/j.jgg.2022.01.008
|
[66] |
ZHAN P L, WEI X, XIAO Z L, et al. GW10, a member of P450 subfamily regulates grain size and grain number in rice[J]. Theoretical and Applied Genetics, 2021, 134(12): 3941-3950. doi: 10.1007/s00122-021-03939-3
|
[67] |
PEI R Q, ZHANG Z G, HUANG M C, et al. Mapping QTLs controlling low-temperature germinability in rice by using single segment substitution lines derived from 4 AA-genome species of wild rice[J]. Euphytica, 2021, 217(4): 58. doi: 10.1007/s10681-021-02791-2.
|
[68] |
TAN Q Y, ZOU T, ZHENG M M, et al. Substitution mapping of the major quantitative trait loci controlling stigma exsertion rate from Oryza glumaepatula[J]. Rice, 2020, 13(1): 37. doi: 10.1186/s12284-020-00397-1.
|
[69] |
WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. doi: 10.1038/ng.3352
|
[70] |
WANG S K, WU K, YUAN Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. doi: 10.1038/ng.2327
|
[71] |
赵杏娟. 广东高州普通野生稻单片段代换系的构建及分蘖数QTL鉴定[D]. 广州: 华南农业大学, 2008.
|