GUO Qinli, SU Licheng, ZHENG Fenglin, et al. Response of growth and physiological characteristics of Pennisetum hydridum to water content change in dredged soil[J]. Journal of South China Agricultural University, 2024, 45(2): 227-236. DOI: 10.7671/j.issn.1001-411X.202307006
    Citation: GUO Qinli, SU Licheng, ZHENG Fenglin, et al. Response of growth and physiological characteristics of Pennisetum hydridum to water content change in dredged soil[J]. Journal of South China Agricultural University, 2024, 45(2): 227-236. DOI: 10.7671/j.issn.1001-411X.202307006

    Response of growth and physiological characteristics of Pennisetum hydridum to water content change in dredged soil

    More Information
    • Received Date: July 18, 2023
    • Available Online: December 12, 2023
    • Published Date: November 01, 2023
    • Objective 

      To study the growth, physiological characteristics and their dynamic changes of Pennisetum hydridum in dredged soils with different water contents, find out the optimal water content for the growth of P. hydridum in dredged soils, and provide a theoretical reference for the ecological solidification method of newly blown and filled dredged soil.

      Method 

      Four water content (w) treatments of 20% (T1), 30% (T2), 40% (T3) and 50% (T4) were set up to analyze the growth, nutrient absorption, water transpiration, leaf and root physiological characteristics of P. hydridum through potting experiment.

      Result 

      The growth performance of P. hydridum was the best in T2, and the plant height (152 cm), dry mass per plant (88.51 g) and N, P and K uptake per plant (505.72, 99.39, 1 703.45 mg) of T2 were significantly higher than those of other treatments (P<0.05). The daily water consumption, water consumption rate, net photosynthetic rate, stomatal conductance and transpiration rate of P. hydridum all increased first and then decreased with the increase of soil water content, and all reached the maximum in T2 and were significantly higher than those of other treatments (P<0.05). The enzyme activity indexes of P. hydridum were higher in T1 and T4 than those of other treatments, and reached the lowest in T2. The comprehensive evaluation results showed that the growth adaptability of P. hydridum to water content in dredged soil was as follows: 30% > 40% > 50% > 20%.

      Conclusion 

      Based on the various indicators, the water content of 30% in dredged soil is the most conducive to growth, nutrient absorption and transpiration and water consumption of P. hydridum, and the growth performance of P. hydridum in flooding stress (T3, T4) was better than that of drought stress (T1). These results can be used as a reference for shallow solidification of dredged soil and utilization of plant resources in practical production applications.

    • [1]
      DEVELIOGLU I, PULAT H F. Compressibility behaviour of natural and stabilized dredged soils in different organic matter contents[J]. Construction and Building Materials, 2019, 228: 116787. doi: 10.1016/j.conbuildmat.2019.116787.
      [2]
      CHU S H, YAO J J. A strength model for concrete made with marine dredged sediment[J]. Journal of Cleaner Production, 2020, 274: 122673. doi: 10.1016/j.jclepro.2020.122673.
      [3]
      WANG L, YEUNG T L K, LAU A Y T, et al. Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing[J]. Journal of Cleaner Production, 2017, 164: 1279-1288. doi: 10.1016/j.jclepro.2017.07.070
      [4]
      WANG L, SHAO Y, ZHAO Z, et al. Optimized utilization studies of dredging sediment for making water treatment ceramsite based on an extreme vertex design[J]. Journal of Water Process Engineering, 2020, 38: 101603. doi: 10.1016/j.jwpe.2020.101603.
      [5]
      PARK J, SON Y, NOH S, et al. The suitability evaluation of dredged soil from reservoirs as embankment material[J]. Journal of Environmental Management, 2016, 183: 443-452.
      [6]
      TODA K, KIKUCHI R, OTAKE T, et al. Effect of soil organic matters in dredged soils to utilization of their mixtures made with a steel slag[J]. Materials, 2020, 13(23): 5450. doi: 10.3390/ma13235450.
      [7]
      吴华林, 赵德招, 程海峰. 我国疏浚土综合利用存在问题及对策研究[J]. 水利水运工程学报, 2013(1): 8-14.
      [8]
      张更生, 徐继涛, 尹崧宇. 疏浚吹填粉土固化室内试验[J]. 水运工程, 2018(9): 54-58.
      [9]
      陈彦霖. 疏浚淤泥的固化处理技术与资源化利用[J]. 中国设备工程, 2020(20): 11-12.
      [10]
      STEPPE K, VANDEGEHUCHTE M W, TOGNETTI R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning[J]. Tree Physiology, 2015, 35(4): 341-345. doi: 10.1093/treephys/tpv033
      [11]
      ZHAO W, DONG X, WU Z, et al. Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status[J]. Journal of Hydrology, 2022, 615: 128671. doi: 10.1016/j.jhydrol.2022.128671.
      [12]
      陈广明, 张祝培, 毕世明, 等. 利用皇竹草生态固化浅表层疏浚土试验研究[J]. 水运工程, 2021(9): 16-22.
      [13]
      ZHAO J, ZHANG W, WANG K, et al. Responses of the soil nematode community to management of hybrid napiergrass: The trade-off between positive and negative effects[J]. Applied Soil Ecology, 2014, 75: 134-144. doi: 10.1016/j.apsoil.2013.10.011
      [14]
      何琳, 祝其丽, 王彦伟, 等. 多年生禾草皇竹草的综合利用研究进展[J]. 应用与环境生物学报, 2020, 26(3): 705-712.
      [15]
      KANCHI G M, NEERAJA V S, SIVAKUMAR BABU G L S. Effect of anisotropy of fibers on the stress-strain response of fiber-reinforced soil[J]. International Journal of Geomechanics, 2015, 15(1): 06014016. doi: 10.1061/(asce)gm.1943-5622.0000392.
      [16]
      生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国标准出版社, 2018.
      [17]
      鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
      [18]
      李合生, 王学奎. 现代植物生理学[M]. 4版. 北京: 高等教育出版社, 2019.
      [19]
      SUN Y, WANG C, CHEN H Y H, et al. Response of plants to water stress: A meta-analysis[J]. Frontiers in Plant Science, 2020, 11: 978. doi: 10.3389/fpls.2020.00978.
      [20]
      YANG W, LIN K, WU C, et al. Effects of waterlogging with different water resources on plant growth and tolerance capacity of four herbaceous flowers in a bioretention basin[J]. Water, 2020, 12(6): 1619. doi: 10.3390/w12061619.
      [21]
      KARIMI M, AHMADI A, HASHEMI J, et al. Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress[J]. South African Journal of Botany, 2019, 121: 394-401. doi: 10.1016/j.sajb.2018.11.028
      [22]
      XIAO C, SUN O J, ZHOU G, et al. Interactive effects of elevated CO2 and drought stress on leaf water potential and growth in Caragana intermedia[J]. Trees - Structure and Function, 2005, 19(6): 711-720.
      [23]
      MEZGEBE A, AZEREFEGNE F. Effect of water stress on glucosinolate content of Brassica carinata and performance of Brevicoryne brassicae and Myzus persicae[J]. International Journal of Tropical Insect Science, 2021, 41(2): 953-960. doi: 10.1007/s42690-020-00340-3
      [24]
      PATEL J, MISHRA A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis[J]. Physiologia Plantarum, 2021, 172(2): 1030-1044. doi: 10.1111/ppl.13324
      [25]
      ZHOU G, ZHOU X, NIE Y, et al. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials[J]. Plant, Cell & Environment, 2018, 41(11): 2589-2599.
      [26]
      ARANJUELO I, MOLERO G, ERICE G, et al. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L. )[J]. Journal of Experimental Botany, 2011, 62(1): 111-123. doi: 10.1093/jxb/erq249
      [27]
      崔东阳, 贺亮亮, 刘崇怀, 等. 淹水胁迫对夏黑葡萄生理特性和品质的影响[J]. 生态学杂志, 2022, 41(12): 2344-2351.
      [28]
      PETERS E B, MCFADDEN J P, MONTGOMERY R A. Biological and environmental controls on tree transpiration in a suburban landscape[J]. Journal of Geophysical Research, 2010, 115(G4): G04006. doi: 10.1029/2009jg001266.
      [29]
      张婵, 洪希群, 吴承祯, 等. 干旱胁迫对闽北乡土树种耗水及光合特性的影响[J]. 应用与环境生物学报, 2023, 29(1): 212-219.
      [30]
      吴俊文, 刘珊, 李吉跃, 等. 干旱胁迫下广东石漠化地区造林树种光合和耗水特性[J]. 生态学报, 2016, 36(11): 3429-3440.
      [31]
      BLANKENAGEL S, YANG Z, AVRAMOVA V, et al. Generating plants with improved water use efficiency[J]. Agronomy, 2018, 8(9): 194. doi: 10.3390/agronomy8090194.
      [32]
      欧芷阳, 庞世龙, 谭长强, 等. 干旱胁迫对桂西南石漠化地区主要造林树种光合与耗水特性的影响[J]. 生态学杂志, 2020, 39(10): 3237-3246.
      [33]
      李吉跃, 周平, 招礼军. 干旱胁迫对苗木蒸腾耗水的影响[J]. 生态学报, 2002(9): 1380-1386.
      [34]
      陈玉, 贾剑波, 颜成正, 等. 干旱胁迫下杉木叶片吸水及水分逆向运移特征[J]. 生态学杂志, 2023, 42(9): 2091-2099.
      [35]
      常宏达, 吕德生, 王振华, 等. 滴灌量和有机无机肥等氮配施对葡萄产量及品质的影响[J]. 干旱地区农业研究, 2022, 40(4): 116-123.
      [36]
      罗成威, 王若水, 王莉莎, 等. 不同水热调控方式对苹果−大豆间作系统土壤温度和根系分布的影响[J]. 水土保持学报, 2023, 37(2): 217-226.
      [37]
      赵经华, 杨庭瑞, 胡文军, 等. 水氮互作对滴灌小麦土壤硝态氮运移、氮平衡及水氮利用效率的影响[J]. 中国农村水利水电, 2021(4): 141-149.
      [38]
      CALZADILLA P I, CARVALHO F E L, GOMEZ R, et al. Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops[J]. Environmental and Experimental Botany, 2022, 201: 104950. doi: 10.1016/j.envexpbot.2022.104950.
      [39]
      WERTIN T M, BELNAP J, REED S C. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged[J]. Functional Ecology, 2017, 31(2): 297-305. doi: 10.1111/1365-2435.12708
      [40]
      李志鹏, 万素梅, 胡守林, 等. 不同灌水频率和灌溉定额对南疆无膜棉蕾铃时空分布及产量形成的影响[J]. 棉花学报, 2022, 34(5): 383-400.
      [41]
      DE OLLAS C, DODD I C. Physiological impacts of ABA-JA interactions under water-limitation[J]. Plant Molecular Biology, 2016, 91(6): 641-650. doi: 10.1007/s11103-016-0503-6
      [42]
      ZHANG X, SUN W, CHEN X, et al. Integrated physiological and transcriptomic analysis reveals mechanism of leaf in Phellodendron chinense Schneid. seedlings response to drought stress[J]. Industrial Crops and Products, 2023, 198: 116679. doi: 10.1016/j.indcrop.2023.116679.
      [43]
      张蓉, 董禄信, 孙长红, 等. 秸秆粉碎覆盖沟播对旱地冬小麦产量及土壤水热特征的影响[J]. 节水灌溉, 2021(7): 60-64.
      [44]
      赵文哲, 刘晓, 杜桂英, 等. 干旱胁迫及复水对M9T337苹果砧木苗生理特性的影响[J]. 山东农业科学, 2022, 54(4): 49-54,61.
      [45]
      RAKHRA G, KAUR T, VYAS D, et al. Molecular cloning, characterization, heterologous expression and in-silico analysis of disordered boiling soluble stress-responsive wBsSRP protein from drought tolerant wheat cv. PBW 175[J]. Plant Physiology and Biochemistry, 2017, 112: 29-44. doi: 10.1016/j.plaphy.2016.12.017
      [46]
      桑子阳, 马履一, 陈发菊. 干旱胁迫对红花玉兰幼苗生长和生理特性的影响[J]. 西北植物学报, 2011, 31(1): 109-115.
      [47]
      DE CÁSSIA ALVES R, OLIVEIRA K R, LUCIO J C B, et al. Exogenous foliar ascorbic acid applications enhance salt-stress tolerance in peanut plants through increase in the activity of major antioxidant enzymes[J]. South African Journal of Botany, 2022, 150: 759-767. doi: 10.1016/j.sajb.2022.08.007
      [48]
      ABABAF M, OMIDI H, BAKHSHANDEH A. Changes in antioxidant enzymes activities and alkaloid amount of Catharanthus roseus in response to plant growth regulators under drought condition[J]. Industrial Crops and Products, 2021, 167: 113505. doi: 10.1016/j.indcrop.2021.113505.
      [49]
      YAVUZ D, KILIC E, SEYMEN M, et al. The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions[J]. Scientia Horticulturae, 2022, 304: 111272. doi: 10.1016/j.scienta.2022.111272.
      [50]
      ÁVILA-LOVERA E, WINTER K, GOLDSMITH G R. Evidence for phylogenetic signal and correlated evolution in plant-water relation traits[J]. New Phytologist, 2023, 237(2): 392-407. doi: 10.1111/nph.18565
      [51]
      DING C, XU C, LU B, et al. Comprehensive evaluation of rice qualities under different nitrogen levels in South China[J]. Foods, 2023, 12(4): 697. doi: 10.3390/foods12040697.
    • Related Articles

      [1]WANG Xianbang, LIN Mingping, LI Jinhong, LI Kunliang, HAN Qiang, HE Wenchun, HUANG Guihua. Effect of intercropping Alpinia katsumadai on soil fungal community within a teak (Tectona grandis) plantation[J]. Journal of South China Agricultural University, 2025, 46(1): 106-114. DOI: 10.7671/j.issn.1001-411X.202312039
      [2]ZOU Yong, DING Xueyao, LIN Manxia, SUN Yongxue. Abundance and structure diversity of denitrifying bacterial community in sediments of Guangzhou Liuxi River[J]. Journal of South China Agricultural University, 2018, 39(3): 65-72. DOI: 10.7671/j.issn.1001-411X.2018.03.011
      [3]YAO Xiaolan, HAO Jianfeng, WU Xuanbei, YAO Junyu, SUN Qianhui, WU Xia. Community structure and species diversity of Betula luminifera plantation under different stand densities in Baiyunshan, north Sichuan[J]. Journal of South China Agricultural University, 2017, 38(4): 95-102. DOI: 10.7671/j.issn.1001-411X.2017.04.016
      [4]TIAN Yao-jia, LIANG Guang-wen, ZENG Ling, LU Yong-yue. Influence of Intercropping Sweet Maize with Different Crops on the Structure of Spider Community[J]. Journal of South China Agricultural University, 2012, 33(3): 342-345. DOI: 10.7671/j.issn.1001-411X.2012.03.014
      [5]TONG Fu-chun,XIAO Yi-hua,WANG Qing-li. Effects of Succession Process of Secondary Forestry on Characteristics of Soil Nematode Communities in Changbai Mountain[J]. Journal of South China Agricultural University, 2009, 30(3). DOI: 10.7671/j.issn.1001-411X.2009.03.015
      [6]Investigation of the composition of soil animal communities under forest vegetations in Guangzhou[J]. Journal of South China Agricultural University, 2005, 26(3): 47-51. DOI: 10.7671/j.issn.1001-411X.2005.03.014
      [7]YANG Jia-zhi~1,SU Zhi-yao~1,CHEN Bei-guang~1,XU Yue-ming~2. Structural characteristics of the secondary-evergreen broadleaved forest in Dapingzhang Forest Park[J]. Journal of South China Agricultural University, 2005, 26(1): 89-92. DOI: 10.7671/j.issn.1001-411X.2005.01.024
      [8]Structural Characteristics of the Secondary Forest Community in Maofengshan, Guangzhou[J]. Journal of South China Agricultural University, 2003, 24(3): 53-56. DOI: 10.7671/j.issn.1001-411X.2003.03.014
      [9]SU Zhi yao 1,CHEN Bei guang 1,WU Da rong 2. Vegetation Types and Community Structure of Shimentai Nature Reserve, Yingde, Guangdong[J]. Journal of South China Agricultural University, 2002, 23(1): 58-62. DOI: 10.7671/j.issn.1001-411X.2002.01.018
      [10]Chen Beiguang Su Zhiyao Li Zhenkui. STRUCTURAL CHARACTERISTICS OF MONTANE BROADLEAVED EVERGREEN FOREST ON MOUNT TIANJINGSHAN, GUANGDONG[J]. Journal of South China Agricultural University, 1997, (3): 42-47.
    • Cited by

      Periodical cited type(10)

      1. 曹琳,吴风华. 唐山市植被覆盖度时空演变及地形因子的响应. 华北理工大学学报(自然科学版). 2025(01): 88-95 .
      2. 薛心悦,郭小平,薛东明,马原,杨帆. 基于GF-2影像的西北干旱荒漠低扰动区植被覆盖度提取方法研究(英文). Journal of Resources and Ecology. 2023(04): 833-846 .
      3. 韦惟,荆降龙,葛晓颖,孙磊,卢正. 长-短NDVI时序检测植被局部突变特征方法研究. 环境监测管理与技术. 2023(06): 28-34 .
      4. 李金朋,冯帅,杨鑫,李光明,赵冬雪,于丰华,许童羽. 融合CLAHE-SV增强Lab颜色特征的水稻覆盖度提取. 农业工程学报. 2023(24): 195-206 .
      5. 马吉刚,汤宇婷,张立民,吴忠胜,崔子腾,窦智. 引黄济青工程沿线生态因子1990-2020年时空变化特征. 水土保持通报. 2022(01): 283-289 .
      6. 赵鸿飞,路钊,伊洋,赵加正,王大庆,时玥,陈阳. 基于GF-6的植被覆盖度遥感估测研究. 测绘与空间地理信息. 2022(03): 19-23 .
      7. 何海清,严椰丽,凌梦云,杨勤锐,陈婷,李麟. 结合三维密集点云的无人机影像大豆覆盖度提取. 农业工程学报. 2022(02): 201-209 .
      8. 李菲菲,汤军,高贤君,杨元维,占杨英. 基于GEE的气候变化对豫北地区冬小麦播种面积与产量影响研究. 河南农业科学. 2022(08): 150-165 .
      9. 王泽,赵良军,牛凯,张芸,杨号. 基于遥感影像的植被覆盖度提取方法研究综述. 农业与技术. 2021(14): 25-29 .
      10. 许宏健,郎博宇,张雪,李鹏伟. 基于landsat8数据的植被覆盖度遥感估算. 现代化农业. 2020(11): 43-45 .

      Other cited types(14)

    Catalog

      Article views (224) PDF downloads (45) Cited by(24)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return