ZHANG Longting, WU Jing, XIONG Xijuan, et al. QTL mapping and epistatic effect analysis of seedling height based on single segment substitution lines in rice[J]. Journal of South China Agricultural University, 2023, 44(6): 881-888. DOI: 10.7671/j.issn.1001-411X.202306067
    Citation: ZHANG Longting, WU Jing, XIONG Xijuan, et al. QTL mapping and epistatic effect analysis of seedling height based on single segment substitution lines in rice[J]. Journal of South China Agricultural University, 2023, 44(6): 881-888. DOI: 10.7671/j.issn.1001-411X.202306067

    QTL mapping and epistatic effect analysis of seedling height based on single segment substitution lines in rice

    More Information
    • Received Date: July 10, 2023
    • Available Online: November 12, 2023
    • Published Date: September 13, 2023
    • Objective 

      To find out the stable QTLs controlling rice seedling height, analyze their epistatic effects, and provide QTL and theoretical references for molecular breeding of rice seedling height.

      Method 

      The single segment substitution lines (SSSLs) with IR65598-112-2 as donor and ‘Huajingxian 74’ as receptor were used as materials. The difference of seedling height between SSSL and ‘Huajingxian 74’ was measured, and the QTLs of seedling height were mapped. The QTL interval was narrowed by substitution mapping, and the epistatic effects of two seedling height QTLs were also analyzed.

      Result 

      Two adjacent QTLs (qSH3-1 and qSH3-2) for seedling height were mapped on the long arm of chromosome 3, which were located in the intervals of 32.59−33.08 and 33.16−34.81 Mb, with the lengths of 0.49 and 1.65 Mb, respectively. The additive effects were −0.86 and −1.09 cm, respectively. The phenotypic contribution rate of additive effects were −4.14% and −5.15%, respectively. However, there was no significant difference of seedling height between SSSL harboring these two QTLs and ‘Huajingxian 74’.

      Conclusion 

      Two QTLs for seedling height were identified, and there may be significant epistasis effects between the two QTLs.

    • [1]
      胡卫安. 水稻直播栽培技术推广意义及措施[J]. 世界热带农业信息, 2020(12): 10-11. doi: 10.3969/j.issn.1009-1726.2020.12.006
      [2]
      刘朝志. 水稻直播栽培存在问题及对策[J]. 现代农村科技, 2019(5): 23. doi: 10.3969/j.issn.1674-5329.2019.05.019
      [3]
      DIMAANO N G B, ALI J, MAHENDER A, et al. Identification of quantitative trait loci governing early germination and seedling vigor traits related to weed competitive ability in rice[J]. Euphytica, 2020, 216(10): 159. doi: 10.1007/s10681-020-02694-8.
      [4]
      ZHANG Z, YU S, YU T, et al. Mapping quantitative trait loci (QTLs) for seedling-vigor using recom binant inbred lines of rice (Oryza sativa L. )[J]. Field Crops Research, 2005, 91(2): 161-170.
      [5]
      DIWAN J R, CHANNBYREGOWDA M, SHENOY V, et al. Molecular mapping of early vigour related QTLs in rice[J]. Research & Reviews: Journal of Biology, 2013, 1: 24-30.
      [6]
      SINGH U M, YADAV S, DIXIT S, et al. QTL hotspots for early vigor and related traits under dry direct-seeded system in rice (Oryza sativa L. )[J]. Frontiers in Plant Science, 2017, 8: 286. doi: 10.3389/fpls.2017.00286.
      [7]
      RAO A N, JOHNSON D E, SIVAPRASAD B, et al. Weed management in direct-seeded rice[M]. Advances in Agronomy, 2007, 93: 153-255.
      [8]
      闫晓霞, 王丰, 柳武革, 等. 水稻直播适应性的遗传基础与育种策略[J]. 广东农业科学, 2022, 49(1): 1-13. doi: 10.16768/j.issn.1004-874X.2022.01.001
      [9]
      马雅美, 张少红, 赵均良. 水稻直播相关性状遗传分析及分子机制研究进展[J]. 广东农业科学, 2021, 48(10): 13-22. doi: 10.16768/j.issn.1004-874X.2021.10.002
      [10]
      REDOÑA E D, MACKILL D J. Mapping quantitative trait loci for seedling vigor in rice using RFLPs[J]. Theoretical and Applied Genetics, 1996, 92(3/4): 395-402.
      [11]
      EIZENGA G C, NEVES P C F, BRYANT R J, et al. Evaluation of a M-202 × Oryza nivara advanced backcross mapping population for seedling vigor, yield components and quality[J]. Euphytica, 2016, 208(1): 157-171. doi: 10.1007/s10681-015-1613-y
      [12]
      ZHANG A P, LIU C L, CHEN G, et al. Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length[J]. Breeding Science, 2017, 67(3): 307-315. doi: 10.1270/jsbbs.16195
      [13]
      LU X, NIU A, CAI H, et al. Genetic dissection of seedling and early vigor in a recombinant inbred line population of rice[J]. Plant Science, 2007, 172(2): 212-220. doi: 10.1016/j.plantsci.2006.08.012
      [14]
      KARLA I C L, HYUNJUNG K, THOMAS H T. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice[J]. Plant Breeding and Biotechnology, 2016, 4(4): 426-440. doi: 10.9787/PBB.2016.4.4.426
      [15]
      CAIRNS J E, NAMUCO O S, TORRES R, et al. Investigating early vigour in upland rice ( Oryza sativa L. ): Part II: Identification of QTLs controlling early vigour under greenhouse and field conditions[J]. Field Crops Research, 2009, 113(3): 207-217. doi: 10.1016/j.fcr.2009.05.007
      [16]
      MANANGKIL O E, VU H T T, MORI N, et al. Mapping of quantitative trait loci controlling seedling vigor in rice (Oryza sativa L. ) under submergence[J]. Euphytica, 2013, 192(1): 63-75. doi: 10.1007/s10681-012-0857-z
      [17]
      ABE A, TAKAGI H, FUJIBE T, et al. OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice[J]. Theoretical and Applied Genetics, 2012, 125(4): 647-657. doi: 10.1007/s00122-012-1857-z
      [18]
      ZHOU L, WANG J, YI Q, et al. Quantitative trait loci for seedling vigor in rice under field conditions[J]. Field Crops Research, 2007, 100(2/3): 294-301.
      [19]
      WU B, MAO D, LIU T, et al. Two quantitative trait loci for grain yield and plant height on chromosome 3 are tightly linked in coupling phase in rice[J]. Molecular Breeding, 2015, 35(8): 156. doi: 10.1007/s11032-015-0345-y.
      [20]
      包劲松, 何平, 夏英武, 等. 不同发育阶段水稻苗高的QTL分析[J]. 遗传, 1999(5): 38-40. doi: 10.3321/j.issn:0253-9772.1999.05.012
      [21]
      杨习武, 高云, 顾后文, 等. 基于染色体单片段代换系的水稻苗期氮利用相关QTL鉴定[J]. 扬州大学学报(农业与生命科学版), 2020, 41(5): 1-8. doi: 10.16872/j.cnki.1671-4652.2020.05.001
      [22]
      孔迎春, 张燎. 两种肥力水平下水稻苗高QTL的比较分析[J]. 武汉植物学研究, 2005(2): 121-124.
      [23]
      ZHAO Y, JIANG C H, REHMAN R M A, et al. Genetic analysis of roots and shoots in rice seedling by association mapping[J]. Genes & Genomics, 2019, 41(1): 95-105.
      [24]
      CHEN K, ZHANG Q, WANG C C, et al. Genetic dissection of seedling vigour in a diverse panel from the 3, 000 Rice (Oryza sativa L. ) Genome Project[J]. Scientific Reports, 2019, 9: 4804. doi: 10.1038/s41598-019-41217-x.
      [25]
      DANG X, THI T G T, DONG G, et al. Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L. )[J]. Planta, 2014, 239(6): 1309-1319. doi: 10.1007/s00425-014-2060-z
      [26]
      LU Q, ZHANG M, NIU X, et al. Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping[J]. Planta, 2016, 243(3): 645-657. doi: 10.1007/s00425-015-2434-x
      [27]
      YANG J, GUO Z, LUO L, et al. Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq[J]. The Crop Journal, 2021, 9(2): 360-371. doi: 10.1016/j.cj.2020.08.010
      [28]
      ZENG M S, YANG J, WU K J, et al. Genome-wide association study reveals early seedling vigour-associated quantitative trait loci in indica rice[J]. Euphytica, 2021, 217(7): 141. doi: 10.1007/s10681-021-02868-y.
      [29]
      杨梯丰, 张子怡, 董景芳, 等. 水稻低温发芽力QTL qLTG3-1基因内分子标记的开发及其在华南籼稻中的应用评价[J]. 广东农业科学, 2021, 48(10): 32-41.
      [30]
      WISSUWA M, WEGNER J, AE N, et al. Substitution mapping of Pup1: A major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil[J]. Theoretical and Applied Genetics, 2002, 105(6/7): 890-897.
      [31]
      ESHED Y, ZAMIR D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics, 1995, 141(3): 1147-1162. doi: 10.1093/genetics/141.3.1147
      [32]
      赵芳明, 张桂权, 曾瑞珍, 等. 利用单片段代换系研究水稻产量相关性状QTL加性及上位性效应[J]. 作物学报, 2012, 38(11): 2007-2014.
      [33]
      YANO K, TAKASHI T, NAGAMATSU S, et al. Efficacy of microarray profiling data combined with QTL mapping for the identification of a QTL gene controlling the initial growth rate in rice[J]. Plant & Cell Physiology, 2012, 53(4): 729-739.
      [34]
      TANKSLEY S D. Mapping polygenes[J]. Annual Review of Genetics, 1993, 27: 205-233. doi: 10.1146/annurev.ge.27.120193.001225
    • Cited by

      Periodical cited type(10)

      1. 曹琳,吴风华. 唐山市植被覆盖度时空演变及地形因子的响应. 华北理工大学学报(自然科学版). 2025(01): 88-95 .
      2. 薛心悦,郭小平,薛东明,马原,杨帆. 基于GF-2影像的西北干旱荒漠低扰动区植被覆盖度提取方法研究(英文). Journal of Resources and Ecology. 2023(04): 833-846 .
      3. 韦惟,荆降龙,葛晓颖,孙磊,卢正. 长-短NDVI时序检测植被局部突变特征方法研究. 环境监测管理与技术. 2023(06): 28-34 .
      4. 李金朋,冯帅,杨鑫,李光明,赵冬雪,于丰华,许童羽. 融合CLAHE-SV增强Lab颜色特征的水稻覆盖度提取. 农业工程学报. 2023(24): 195-206 .
      5. 马吉刚,汤宇婷,张立民,吴忠胜,崔子腾,窦智. 引黄济青工程沿线生态因子1990-2020年时空变化特征. 水土保持通报. 2022(01): 283-289 .
      6. 赵鸿飞,路钊,伊洋,赵加正,王大庆,时玥,陈阳. 基于GF-6的植被覆盖度遥感估测研究. 测绘与空间地理信息. 2022(03): 19-23 .
      7. 何海清,严椰丽,凌梦云,杨勤锐,陈婷,李麟. 结合三维密集点云的无人机影像大豆覆盖度提取. 农业工程学报. 2022(02): 201-209 .
      8. 李菲菲,汤军,高贤君,杨元维,占杨英. 基于GEE的气候变化对豫北地区冬小麦播种面积与产量影响研究. 河南农业科学. 2022(08): 150-165 .
      9. 王泽,赵良军,牛凯,张芸,杨号. 基于遥感影像的植被覆盖度提取方法研究综述. 农业与技术. 2021(14): 25-29 .
      10. 许宏健,郎博宇,张雪,李鹏伟. 基于landsat8数据的植被覆盖度遥感估算. 现代化农业. 2020(11): 43-45 .

      Other cited types(14)

    Catalog

      Article views (627) PDF downloads (27) Cited by(24)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return