Citation: | PENG Xin, QIAN Qian, TAN Jiantao, et al. Research progress on bioinformatics databases and tools related to rice genetics and breeding[J]. Journal of South China Agricultural University, 2023, 44(6): 854-866. DOI: 10.7671/j.issn.1001-411X.202306065 |
Rice (Oryza sativa L.) is both a major staple food and a model crop plant for monocot studies. Facing the increasingly severe environmental and population problems, breeding varieties with high yield, high quality, and wide adaptability is the efficient way to solve the food security problems. With the rapid development of multi-omics technology, large volumes of data related to rice genetics and breeding have been accumulated. Bioinformatics databases and online analysis tools are developed to store, integrate, visualize, and share these datasets. In addition, some databases possess built-in tools for further mining and using datasets to provide data support for decision-making in breeding. In this review, we systematically sort out rice bioinformatics databases and online analysis tools developed in the past two decades. Subsequently, we classified and summarized these resources based on their built-in datasets and features. Finally, the problems and deficiencies of the existing rice bioinformatics resources were discussed, and the development direction of bioinformatics resources in the era of big data and artificial intelligence was prospected.
[1] |
VAN ITTERSUM M K. Crop yields and global food security. Will yield increase continue to feed the world?[J]. European Review of Agricultural Economics, 2016, 43(1): 191-192. doi: 10.1093/erae/jbv034
|
[2] |
景海春, 田志喜, 种康, 等. 分子设计育种的科技问题及其展望概论[J]. 中国科学(生命科学), 2021, 51(10): 1356-1365.
|
[3] |
WALLACE J G, RODGERS-MELNICK E, BUCKLER E S. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics[J]. Annual Review of Genetics, 2018, 52: 421-444. doi: 10.1146/annurev-genet-120116-024846
|
[4] |
JIA L, XIE L J, LAO S T, et al. Rice bioinformatics in the genomic era: Status and perspectives[J]. The Crop Journal, 2021, 9(3): 609-621. doi: 10.1016/j.cj.2021.03.003
|
[5] |
彭歆, 罗立新, 张力, 等. 重离子诱发的2个水稻突变体表型鉴定及遗传分析[J]. 华南农业大学学报, 2018, 39(1): 12-17. doi: 10.7671/j.issn.1001-411X.2018.01.003
|
[6] |
程式华. 中国水稻育种百年发展与展望[J]. 中国稻米, 2021, 27(4): 1-6.
|
[7] |
WREN J D, GEORGESCU C, GILES C B, et al. Use it or lose it: Citations predict the continued online availability of published bioinformatics resources[J]. Nucleic Acids Research, 2017, 45(7): 3627-3633. doi: 10.1093/nar/gkx182
|
[8] |
WING R A, AMMIRAJU J S S, LUO M, et al. The Oryza map alignment project: The golden path to unlocking the genetic potential of wild rice species[J]. Plant Molecular Biology, 2005, 59(1): 53-62. doi: 10.1007/s11103-004-6237-x
|
[9] |
YAO W, LI G, ZHAO H, et al. Exploring the rice dispensable genome using a metagenome-like assembly strategy[J]. Genome Biology, 2015, 16: 187. doi: 10.1186/s13059-015-0757-3
|
[10] |
SUN C, HU Z Q, ZHENG T Q, et al. RPAN: Rice pan-genome browser for ~3000 rice genomes[J]. Nucleic Acids Research, 2017, 45(2): 597-605. doi: 10.1093/nar/gkw958
|
[11] |
ZHAO Q, FENG Q, LU H, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Nature Genetics, 2018, 50(2): 278-284. doi: 10.1038/s41588-018-0041-z
|
[12] |
QIN P, LU H W, DU H L, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(13): 3542-3558. doi: 10.1016/j.cell.2021.04.046
|
[13] |
SHANG L, LI X, HE H, et al. A super pan-genomic landscape of rice[J]. Cell Research, 2022, 32(10): 878-896. doi: 10.1038/s41422-022-00685-z
|
[14] |
YU Z, CHEN Y, ZHOU Y, et al. Rice Gene Index: A comprehensive pan-genome database for comparative and functional genomics of Asian rice[J]. Molecular Plant, 2023, 16(5): 798-801. doi: 10.1016/j.molp.2023.03.012
|
[15] |
WANG J, YANG W, ZHANG S, et al. A pangenome analysis pipeline provides insights into functional gene identification in rice[J]. Genome Biology, 2023, 24(1): 19. doi: 10.1186/s13059-023-02861-9
|
[16] |
PRUITT K D, TATUSOVA T, MAGLOTT D R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins[J]. Nucleic Acids Research, 2007, 35(Suppl_1): D61-D65. doi: 10.1093/nar/gkl842
|
[17] |
HUBBARD T, BARKER D, BIRNEY E, et al. The Ensembl genome database project[J]. Nucleic Acids Research, 2002, 30(1): 38-41. doi: 10.1093/nar/30.1.38
|
[18] |
GOODSTEIN D M, SHU S, HOWSON R, et al. Phytozome: A comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012, 40(DI): D1178-D1186.
|
[19] |
SAKAI H, LEE S S, TANAKA T, et al. Rice annotation project database (RAP-DB): An integrative and interactive database for rice genomics[J]. Plant and Cell Physiology, 2013, 54(2): e6. doi: 10.1093/pcp/pcs183
|
[20] |
KAWAHARA Y, DE LA BASTIDE M, HAMILTON J P, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice, 2013, 6(1): 4. doi: 10.1186/1939-8433-6-4
|
[21] |
SONG J M, LEI Y, SHU C C, et al. Rice Information GateWay: A comprehensive bioinformatics platform for indica rice genomes[J]. Molecular Plant, 2018, 11(3): 505-507. doi: 10.1016/j.molp.2017.10.003
|
[22] |
SANG J, ZOU D, WANG Z, et al. IC4R-2.0: Rice genome reannotation using massive RNA-seq data[J]. Genomics, Proteomics & Bioinformatics, 2020, 18(2): 161-172.
|
[23] |
AGRET C, GOTTIN C, DEREEPER A, et al. South green resources to manage rice big genomics data[C]//The Plant & Animal Genome Conference (PAG). San Diego: Scherago International, 2020.
|
[24] |
OHYANAGI H, EBATA T, HUANG X, et al. OryzaGenome: Genome diversity database of wild Oryza species[J]. Plant and Cell Physiology, 2016, 57(1): e1.
|
[25] |
MAO L, CHEN M, CHU Q, et al. RiceRelativesGD: A genomic database of rice relatives for rice research[J]. Database, 2019, 2019: baz110. doi: 10.1093/database/baz110
|
[26] |
YAO W, LI G, YU Y, et al. funRiceGenes dataset for comprehensive understanding and application of rice functional genes[J]. GigaScience, 2018, 7(1): gix119.
|
[27] |
SATO Y, TAKEHISA H, KAMATSUKI K, et al. RiceXPro version 3.0: Expanding the informatics resource for rice transcriptome[J]. Nucleic Acids Research, 2013, 41(D1): D1206-D1213.
|
[28] |
WANG L, XIE W, CHEN Y, et al. A dynamic gene expression atlas covering the entire life cycle of rice[J]. The Plant Journal, 2010, 61(5): 752-766. doi: 10.1111/j.1365-313X.2009.04100.x
|
[29] |
XIA L, ZOU D, SANG J, et al. Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice[J]. Journal of Genetics and Genomics, 2017, 44(5): 235-241. doi: 10.1016/j.jgg.2017.05.003
|
[30] |
KAWAHARA Y, OONO Y, WAKIMOTO H, et al. TENOR: Database for comprehensive mRNA-seq experiments in rice[J]. Plant and Cell Physiology, 2016, 57(1): e7.
|
[31] |
YU Y, ZHANG H, LONG Y, et al. Plant Public RNA-seq Database: A comprehensive online database for expression analysis of ~45 000 plant public RNA-Seq libraries[J]. Plant Biotechnology Journal, 2022, 20(5): 806-808. doi: 10.1111/pbi.13798
|
[32] |
ZHANG P, WANG Y, CHACHAR S, et al. eRice: A refined epigenomic platform for japonica and indica rice[J]. Plant Biotechnology Journal, 2020, 18(8): 1642-1644. doi: 10.1111/pbi.13329
|
[33] |
XIE L, LIU M, ZHAO L, et al. RiceENCODE: A comprehensive epigenomic database as a rice Encyclopedia of DNA elements[J]. Molecular Plant, 2021, 14(10): 1604-1606. doi: 10.1016/j.molp.2021.08.018
|
[34] |
ZHANG B, FEI Y, FENG J, et al. RiceNCexp: A rice non-coding RNA co-expression atlas based on massive RNA-seq and small-RNA seq data[J]. Journal of Experimental Botany, 2022, 73(18): 6068-6077. doi: 10.1093/jxb/erac285
|
[35] |
SANAN-MISHRA N, TRIPATHI A, GOSWAMI K, et al. ARMOUR - A rice miRNA: mRNA interaction resource[J]. Frontiers in Plant Science, 2018, 9: 602. doi: 10.3389/fpls.2018.00602
|
[36] |
ZHANG Z, XU Y, YANG F, et al. RiceLncPedia: A comprehensive database of rice long non-coding RNAs[J]. Plant Biotechnology Journal, 2021, 19(8): 1492-1494. doi: 10.1111/pbi.13639
|
[37] |
LIU W T, YANG C C, CHEN R K, et al. RiceATM: A platform for identifying the association between rice agronomic traits and miRNA expression[J]. Database, 2016, 2016: baw151.
|
[38] |
JOHNSON C, BOWMAN L, ADAI A T, et al. CSRDB: A small RNA integrated database and browser resource for cereals[J]. Nucleic Acids Research, 2007, 35(Suppl_1): D829-D833.
|
[39] |
KOZOMARA A, BIRGAOANU M, GRIFFITHS-JONES S. miRBase: From microRNA sequences to function[J]. Nucleic Acids Research, 2019, 47(D1): D155-D162. doi: 10.1093/nar/gky1141
|
[40] |
YUAN C, MENG X, LI X, et al. PceRBase: A database of plant competing endogenous RNA[J]. Nucleic Acids Research, 2017, 45(D1): D1009-D1014. doi: 10.1093/nar/gkw916
|
[41] |
MARSICO M D, PAYTUVI GALLART A, SANSEVERINO W, et al. GreeNC 2.0: A comprehensive database of plant long non-coding RNAs[J]. Nucleic Acids Research, 2022, 50(D1): D1442-D1447. doi: 10.1093/nar/gkab1014
|
[42] |
JIN J, LU P, XU Y, et al. PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs[J]. Nucleic Acids Research, 2021, 49(D1): D1489-D1495. doi: 10.1093/nar/gkaa910
|
[43] |
SZCZEŚNIAK M W, BRYZGHALOV O, CIOMBOROWSKA-BASHEER J, et al. CANTATAdb 2.0: Expanding the collection of plant long noncoding RNAs[J]. Methods in Molecular Biology, 2019, 1933: 415-429.
|
[44] |
GUO Z, KUANG Z, WANG Y, et al. PmiREN: A comprehensive encyclopedia of plant miRNAs[J]. Nucleic Acids Research, 2020, 48(D1): D1114-D1121. doi: 10.1093/nar/gkz894
|
[45] |
XU X, DU T, MAO W, et al. PlantcircBase 7.0: Full-length transcripts and conservation of plant circRNAs[J]. Plant Communications, 2022, 3(4): 100343. doi: 10.1016/j.xplc.2022.100343
|
[46] |
GUO X, WANG T, JIANG L, et al. PlaASDB: A comprehensive database of plant alternative splicing events in response to stress[J]. BMC Plant Biology, 2023, 23(1): 225. doi: 10.1186/s12870-023-04234-7
|
[47] |
ZHU S, YE W, YE L, et al. PlantAPAdb: A comprehensive database for alternative polyadenylation sites in plants[J]. Plant Physiology, 2020, 182(1): 228-242. doi: 10.1104/pp.19.00943
|
[48] |
徐海冬, 宁博林, 牟芳, 等. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. doi: 10.16288/j.yczz.20-200
|
[49] |
HAN L, ZHONG W, QIAN J, et al. A multi-omics integrative network map of maize[J]. Nature Genetics, 2023, 55(1): 144-153. doi: 10.1038/s41588-022-01262-1
|
[50] |
LIU C, MA Y, ZHAO J, et al. Computational network biology: Data, models, and applications[J]. Physics Reports, 2020, 846: 1-66. doi: 10.1016/j.physrep.2019.12.004
|
[51] |
HAQUE S, AHMAD J S, CLARK N M, et al. Computational prediction of gene regulatory networks in plant growth and development[J]. Current Opinion in Plant Biology, 2019, 47: 96-105. doi: 10.1016/j.pbi.2018.10.005
|
[52] |
YAN J, WANG X. Machine learning bridges omics sciences and plant breeding[J]. Trends in Plant Science, 2023, 28(2): 199-210. doi: 10.1016/j.tplants.2022.08.018
|
[53] |
SATO Y, NAMIKI N, TAKEHISA H, et al. RiceFREND: A platform for retrieving coexpressed gene networks in rice[J]. Nucleic Acids Research, 2013, 41(Database issue): D1214-D1221.
|
[54] |
HAMADA K, HONGO K, SUWABE K, et al. OryzaExpress: An integrated database of gene expression networks and omics annotations in rice[J]. Plant and Cell Physiology, 2011, 52(2): 220-229.
|
[55] |
LIN H, YU J, PEARCE S P, et al. RiceAntherNet: A gene co-expression network for identifying anther and pollen development genes[J]. The Plant Journal, 2017, 92(6): 1076-1091. doi: 10.1111/tpj.13744
|
[56] |
SIRCAR S, MUSADDI M, PAREKH N. NetREx: Network-based rice expression analysis server for abiotic stress conditions[J]. Database, 2022, 2022: baac060.
|
[57] |
GU H, ZHU P, JIAO Y, et al. PRIN: A predicted rice interactome network[J]. BMC Bioinformatics, 2011, 12: 161. doi: 10.1186/1471-2105-12-161
|
[58] |
LEE T, OH T, YANG S, et al. RiceNet v2: An improved network prioritization server for rice genes[J]. Nucleic Acids Research, 2015, 43(W1): W122-W127. doi: 10.1093/nar/gkv253
|
[59] |
LIU S, LIU Y, ZHAO J, et al. A computational interactome for prioritizing genes associated with complex agronomic traits in rice (Oryza sativa)[J]. The Plant Journal, 2017, 90(1): 177-188. doi: 10.1111/tpj.13475
|
[60] |
PENG H, WANG K, CHEN Z, et al. MBKbase for rice: An integrated omics knowledgebase for molecular breeding in rice[J]. Nucleic Acids Research, 2020, 48(D1): D1085-D1092.
|
[61] |
ZHAO H, YAO W, OUYANG Y, et al. RiceVarMap: A comprehensive database of rice genomic variations[J]. Nucleic Acids Research, 2015, 43(Database issue): D1018-D1022.
|
[62] |
MANSUETO L, FUENTES R R, BORJA F N, et al. Rice SNP-seek database update: New SNPs, indels, and queries[J]. Nucleic Acids Research, 2017, 45(D1): D1075-D1081. doi: 10.1093/nar/gkw1135
|
[63] |
YAN J, ZOU D, LI C, et al. SR4R: An integrative SNP resource for genomic breeding and population research in rice[J]. Genomics, Proteomics & Bioinformatics, 2020, 18(2): 173-185.
|
[64] |
YONEMARU J, EBANA K, YANO M. HapRice, an SNP haplotype database and a web tool for rice[J]. Plant and Cell Physiology, 2014, 55(1): e9.
|
[65] |
WANG C, YU H, HUANG J, et al. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0[J]. Plant Biotechnology Journal, 2020, 18(1): 14-16. doi: 10.1111/pbi.13215
|
[66] |
鄂志国, 王磊. 中国水稻品种及其系谱数据库[J]. 中国水稻科学, 2011, 25(5): 565-566. doi: 10.3969/j.issn.1001-7216.2011.05.017
|
[67] |
COPETTI D, ZHANG J, EL BAIDOURI M, et al. RiTE database: A resource database for genus-wide rice genomics and evolutionary biology[J]. BMC Genomics, 2015, 16(1): 538. doi: 10.1186/s12864-015-1762-3
|
[68] |
LIU Z, WANG T, WANG L, et al. RTRIP: A comprehensive profile of transposon insertion polymorphisms in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2379-2381. doi: 10.1111/pbi.13425
|
[69] |
刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 38-49. doi: 10.7671/j.issn.1001-411X.201905058
|
[70] |
李文龙, 栾鑫, 张强, 等. 基于CRISPR/Cas9基因编辑技术的水稻定向改良研究进展[J]. 广东农业科学, 2022, 49(9): 114-124. doi: 10.16768/j.issn.1004-874X.2022.09.012
|
[71] |
何晓玲, 刘鹏程, 马伯军, 等. 基于CRISPR/Cas9的基因编辑技术研究进展及其在植物中的应用[J]. 植物学报, 2022, 57(4): 508-531.
|
[72] |
ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. doi: 10.1038/s41586-019-1711-4
|
[73] |
XIE X, MA X, ZHU Q, et al. CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9): 1246-1249. doi: 10.1016/j.molp.2017.06.004
|
[74] |
LIU W, XIE X, MA X, et al. DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J]. Molecular Plant, 2015, 8(9): 1431-1433. doi: 10.1016/j.molp.2015.05.009
|
[75] |
BAE S, KWEON J, KIM H S, et al. Microhomology-based choice of Cas9 nuclease target sites[J]. Nature Methods, 2014, 11(7): 705-706. doi: 10.1038/nmeth.3015
|
[76] |
XIE X, LI F, TAN X, et al. BEtarget: A versatile web-based tool to design guide RNAs for base editing in plants[J]. Computational and Structural Biotechnology Journal, 2022, 20: 4009-4014. doi: 10.1016/j.csbj.2022.07.046
|
[77] |
XIE X, LIU W, DONG G, et al. MMEJ-KO: A web tool for designing paired CRISPR guide RNAs for microhomology-mediated end joining fragment deletion[J]. Science China Life Sciences, 2021, 64(6): 1021-1024. doi: 10.1007/s11427-020-1797-3
|
[78] |
MUTWIL M, OBRO J, WILLATS W G T, et al. GeneCAT: Novel webtools that combine BLAST and co-expression analyses[J]. Nucleic Acids Research, 2008, 36(Suppl_2): W320-W326.
|
[79] |
PARK J, BAE S, KIM J S. Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites[J]. Bioinformatics, 2015, 31(24): 4014-4016. doi: 10.1093/bioinformatics/btv537
|
[80] |
BAE S, PARK J, KIM J S. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases[J]. Bioinformatics, 2014, 30(10): 1473-1475. doi: 10.1093/bioinformatics/btu048
|
[81] |
LEI Y, LU L, LIU H Y, et al. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants[J]. Molecular Plant, 2014, 7(9): 1494-1496. doi: 10.1093/mp/ssu044
|
[82] |
LIU H, DING Y, ZHOU Y, et al. CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants[J]. Molecular Plant, 2017, 10(3): 530-532. doi: 10.1016/j.molp.2017.01.003
|
[83] |
FAN J, SHI L, LIU Q, et al. Annotation and evaluation of base editing outcomes in multiple cell types using CRISPRbase[J]. Nucleic Acids Research, 2023, 51(D1): D1249-D1256. doi: 10.1093/nar/gkac967
|
[84] |
ZHENG Y, ZHANG N, MARTIN G B, et al. Plant genome editing database (PGED): A call for submission of information about genome-edited plant mutants[J]. Molecular Plant, 2019, 12(2): 127-129. doi: 10.1016/j.molp.2019.01.001
|
[85] |
HONG W J, KIM Y J, KIM E J, et al. CAFRI-Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice[J]. The Plant Journal, 2020, 104(2): 532-545. doi: 10.1111/tpj.14926
|
[86] |
LIU Q, PENG X, SHEN M, et al. Ribo-uORF: A comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling[J]. Nucleic Acids Research, 2023, 51(D1): D248-D261. doi: 10.1093/nar/gkac1094
|
[87] |
XUE C, QIU F, WANG Y, et al. Tuning plant phenotypes by precise, graded downregulation of gene expression[J]. Nature Biotechnology, 2023. doi: 10.1038/s41587-023-01707-w.
|
[88] |
王向峰, 才卓. 中国种业科技创新的智能时代: “玉米育种4.0”[J]. 玉米科学, 2019, 27(1): 1-9. doi: 10.13597/j.cnki.maize.science.20190101
|
[89] |
PéREZ P, DE LOS CAMPOS G. Genome-wide regression and prediction with the BGLR statistical package[J]. Genetics, 2014, 198(2): 483-495. doi: 10.1534/genetics.114.164442
|
[90] |
PÉREZ-RODRÍGUEZ P, GIANOLA D, GONZÁLEZ-CAMACHO J M, et al. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat[J]. G3:Genes| Genomes| Genetics, 2012, 2(12): 1595-1605.
|
[91] |
CHARMET G, TRAN L G, AUZANNEAU J, et al. BWGS: A R package for genomic selection and its application to a wheat breeding programme[J]. PLoS One, 2020, 15(4): e0222733. doi: 10.1371/journal.pone.0222733
|
[92] |
YAN J, XU Y, CHENG Q, et al. LightGBM: Accelerated genomically designed crop breeding through ensemble learning[J]. Genome Biology, 2021, 22(1): 271. doi: 10.1186/s13059-021-02492-y
|
[93] |
MA W, QIU Z, SONG J, et al. A deep convolutional neural network approach for predicting phenotypes from genotypes[J]. Planta, 2018, 248(5): 1307-1318. doi: 10.1007/s00425-018-2976-9
|
[94] |
WANG K, ABID M A, RASHEED A, et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants[J]. Molecular Plant, 2023, 16(1): 279-293. doi: 10.1016/j.molp.2022.11.004
|
[95] |
YIN L, ZHANG H, TANG Z, et al. HIBLUP: An integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data[J]. Nucleic Acids Research, 2023, 51(8): 3501-3512. doi: 10.1093/nar/gkad074
|
[96] |
YIN L, ZHANG H, ZHOU X, et al. KAML: Improving genomic prediction accuracy of complex traits using machine learning determined parameters[J]. Genome Biology, 2020, 21(1): 146. doi: 10.1186/s13059-020-02052-w
|
[97] |
MOHAMMADI M, TIEDE T, SMITH K P. PopVar: A genome-wide procedure for predicting genetic variance and correlated response in biparental breeding populations[J]. Crop Science, 2015, 55(5): 2068-2077. doi: 10.2135/cropsci2015.01.0030
|
[98] |
ENDELMAN J B. Ridge regression and other kernels for genomic selection with R package rrBLUP[J]. The Plant Genome, 2011, 4(3): 250-255. doi: 10.3835/plantgenome2011.08.0024
|
[99] |
COVARRUBIAS-PAZARAN G. Genome-assisted prediction of quantitative traits using the R package sommer[J]. PLoS One, 2016, 11(6): e0156744. doi: 10.1371/journal.pone.0156744
|
[100] |
BUDHLAKOTI N, MISHRA D C, RAI A, et al. STGS: Genomic selection using single trait [EB/OL]. [2023-06-30]. https://cran.r-project.org/web/packages/STGS.
|
[101] |
YANG J, LEE S H, GODDARD M E, et al. GCTA: A tool for genome-wide complex trait analysis[J]. American Journal of Human Genetics, 2011, 88(1): 76-82. doi: 10.1016/j.ajhg.2010.11.011
|
[102] |
CHENG H, FERNANDO R, GARRICK D, et al. JWAS: Julia implementation of whole-genome analysis software[C]//Proceedings of the World Congress on Genetics Applied to Livestock Production. Auckland, New Zealand: World Congress on Genetics Applied to Livestock Production, 2018.
|
[103] |
KANG H, NING C, ZHOU L, et al. PIBLUP: High-performance software for large-scale genetic evaluation of animals and plants[J]. Frontiers in Genetics, 2018, 9: 226. doi: 10.3389/fgene.2018.00226
|
[104] |
TECLE I Y, EDWARDS J D, MENDA N, et al. solGS: A web-based tool for genomic selection[J]. BMC Bioinformatics, 2014, 15(1): 398. doi: 10.1186/s12859-014-0398-7
|
[105] |
CHEN C J, ZHANG Z. iPat: Intelligent prediction and association tool for genomic research[J]. Bioinformatics, 2018, 34(11): 1925-1927.
|
[106] |
XU Y, MA K, ZHAO Y, et al. Genomic selection: A breakthrough technology in rice breeding[J]. The Crop Journal, 2021, 9(3): 669-677. doi: 10.1016/j.cj.2021.03.008
|
[107] |
XU Y, ZHANG X, LI H, et al. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction[J]. Molecular Plant, 2022, 15(11): 1664-1695. doi: 10.1016/j.molp.2022.09.001
|
[108] |
蒋金金, 苏汉东, 洪登峰, 等. 植物生物技术研究进展[J]. 植物生理学报, 2023, 59(8): 1436-1462. doi: 10.13592/j.cnki.ppj.600006
|