ZHONG Xuhua, LIANG Kaiming, PAN Junfeng, et al. Research progress on low-carbon and high-yield cultivation technology for double-cropping rice in South China[J]. Journal of South China Agricultural University, 2023, 44(6): 867-874. DOI: 10.7671/j.issn.1001-411X.202306011
    Citation: ZHONG Xuhua, LIANG Kaiming, PAN Junfeng, et al. Research progress on low-carbon and high-yield cultivation technology for double-cropping rice in South China[J]. Journal of South China Agricultural University, 2023, 44(6): 867-874. DOI: 10.7671/j.issn.1001-411X.202306011

    Research progress on low-carbon and high-yield cultivation technology for double-cropping rice in South China

    More Information
    • Author Bio:

      ZHONG Xuhua:   钟旭华,博士,广东省农业科学院水稻研究所二级研究员,广东省水稻产业技术体系首席专家,Norman Borlaug奖和广东省丁颖科技奖获得者,享受国务院政府特殊津贴。长期从事水稻高产高效栽培理论与技术研究,在水稻高效施肥、低碳栽培、抗倒和高产方面有造诣。先后主持国家自然科学基金、“863”计划、国家公益性行业科研专项、广东省自然科学基金、广东省科技攻关、国际合作和科技部成果转化等项目30多项。发表学术论文120余篇,主著(编)专著4本,获省部级科研成果奖励8项。主持研制的水稻“三控”施肥技术,可节省氮肥20%、增产10%左右,先后入选农业农村部主推技术和超级稻“双增一百”技术,连续多年入选广东省农业主推技术和广东省农业面源污染治理重点推广技术。主持研发的水稻低碳高产栽培技术,先后入选国家发改委重点推广节能低碳技术目录和广东省农业主推技术

    • Received Date: June 19, 2023
    • Available Online: November 12, 2023
    • Published Date: July 25, 2023
    • The key technologies for low-carbon and high-yield of double-cropping rice in South China (DCRSC) and their integrated application were introduced from the aspects of low-carbon variety selection, water-saving and emission reduction irrigation, and fertilizer reduction and efficiency enhancement, etc. The main progress, problem and future focus on the development and extension of low-carbon and high-yield technology for DCRSC were summarized. The low-carbon and high-yield cultivation technology for DCRSC could synergize water-saving and fertilizer-saving, emission reduction and pollution control, high yield and income, realized the coordination of low-carbon and high-yield, therefore it would have a good application prospect. There are main problems for this technology including limited available varieties, undiversified planting modes, and difficult promotion at present. While increasing policy support, further efforts are needed to enhance the improvement and extension of the new technology, including variety screening, cropping pattern optimization and basic research, so as to ensure national food security and achieve carbon peak and carbon neutrality goals.

    • [1]
      陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3-12.
      [2]
      管大海, 张俊, 王卿梅, 等. 气候智慧型农业及其对我国农业发展的启示[J]. 中国农业科技导报, 2017, 19(10): 7-13.
      [3]
      曹凑贵, 李成芳. 低碳稻作理论与实践[M]. 北京: 科学出版社, 2014.
      [4]
      高旺盛, 陈源泉, 董文. 发展循环农业是低碳经济的重要途径[J]. 中国生态农业学报, 2010, 18(5): 1106-1109.
      [5]
      蔡祖聪, 徐华, 马静. 稻田生态系统CH4和N2O排放[M]. 合肥: 中国科学技术大学出版社, 2009.
      [6]
      石生伟, 李玉娥, 刘运通, 等. 中国稻田CH4和N2O排放及减排整合分析[J]. 中国农业科学, 2010, 43(14): 2923-2936.
      [7]
      ZHANG Y, JIANG Y, TAI A P K, et al. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China[J]. Environmental Research Letters, 2019, 14(11): 114020. doi: 10.1088/1748-9326/ab488d
      [8]
      TANG J C, LIU T Q, JIANG Y, et al. Current status of carbon neutrality in Chinese rice fields (2002−2017) and strategies for its achievement[J]. Science of The Total Environment, 2022, 842: 156713. doi: 10.1016/j.scitotenv.2022.156713
      [9]
      张卫建, 陈长青, 江瑜, 等. 气候变暖对我国水稻生产的综合影响及其应对策略[J]. 农业环境科学学报, 2020, 39(4): 805-811.
      [10]
      唐志伟, 张俊, 邓兴艾, 等. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报, 2022, 30(4): 582-591.
      [11]
      国家统计局. 2022中国统计年鉴[M]. 北京:中国统计出版社,2023.
      [12]
      陈田, 潘竟虎. 2009—2019年中国人为CH4排放量的估算及时空格局[J]. 中国环境科学, 2022, 42(12): 5549-5560. doi: 10.3969/j.issn.1000-6923.2022.12.011
      [13]
      LIANG K M, ZHONG X H, HUANG N R, et al. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in South China[J]. Agricultural Water Management, 2016, 163: 319-331. doi: 10.1016/j.agwat.2015.10.015
      [14]
      LIANG K M, ZHONG X H, HUANG N R, et al. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system[J]. Science of the Total Environment, 2017, 609: 46-57. doi: 10.1016/j.scitotenv.2017.07.118
      [15]
      LIANG K M, ZHONG X H, PAN J F, et al. Reducing nitrogen surplus and environmental losses by optimized nitrogen and water management in double rice cropping system of South China[J]. Agriculture, Ecosystems & Environment, 2019, 286: 106680.
      [16]
      LIANG K M, ZHONG X H, FU Y Q, et al. Mitigation of environmental N pollution and greenhouse gas emission from double rice cropping system with a new alternate wetting and drying irrigation regime coupled with optimized N fertilization in South China[J]. Agricultural Water Management, 2023, 282: 108282. doi: 10.1016/j.agwat.2023.108282
      [17]
      许黎, 任万辉, 杨宁, 等. 广东清远早、晚稻稻田甲烷排放的观测研究[J]. 气象, 2007, 33(3): 19-27.
      [18]
      闫聪硕, 杨莉莉, 周奇, 等. 我国水稻不同产区施氮量与产量分析比较[J]. 农业科技与装备, 2023(1): 17-19.
      [19]
      邹建文, 秦艳梅, 刘树伟. 不同水分管理方式下水稻生长季N2O排放量估算: 模型应用[J]. 环境科学, 2009, 30(4): 949-955.
      [20]
      IPCC. Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2013.
      [21]
      王增远, 徐雨昌, 李震, 等. 水稻品种对稻田甲烷排放的影响[J]. 作物学报, 1999, 25(4): 441-446. doi: 10.3321/j.issn:0496-3490.1999.04.007
      [22]
      黄农荣, 梁开明, 钟旭华, 等. 南方低甲烷排放的高产水稻品种筛选与评价[J]. 农业环境科学学报, 2018, 37(12): 2854-2863. doi: 10.11654/jaes.2018-0125
      [23]
      JIANG Y, VAN GROENIGEN K J, HUANG S, et al. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23: 4728-4738. doi: 10.1111/gcb.13737
      [24]
      黄农荣, 钟旭华, 郑海波. 水稻氮高效基因型及其评价指标的筛选[J]. 中国农学通报, 2006, 22(6): 29-33.
      [25]
      吴子帅, 罗翠萍, 李虎, 等. 氮高效型优质常规稻品种筛选[J]. 南方农业学报, 2021, 52(1): 63-69.
      [26]
      胡香玉, 钟旭华, 彭碧琳, 等. 减氮条件下高产水稻品种的产量形成和氮素利用特征[J]. 核农学报, 2019, 33(12): 2460-2471.
      [27]
      黄农荣, 傅友强, 钟旭华, 等. 华南双季稻主栽品种的光能利用效率及聚类分析[J]. 中国生态农业学报(中英文), 2019, 27(11): 1714-1724.
      [28]
      杨建昌, 张建华. 水稻高产节水灌溉[M]. 北京: 科学出版社, 2019.
      [29]
      BOUMAN B A M, LAMPAYAN R M, TUONG T P. Water management in irrigated rice: Coping with water scarcity[M]. Manila: International Rice Research Institute, 2007: 53.
      [30]
      LAMPAYAN R M, REJESUS R M, SINGLETON G R, et al. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice[J]. Field Crops Research, 2015, 170: 95-108. doi: 10.1016/j.fcr.2014.10.013
      [31]
      郭荣发, 陈爱珠, 唐德强. 南方直播水稻浅沟渗灌节水增产机理研究[J]. 西北农林科技大学学报(自然科学版), 2004, 32(5): 57-60. doi: 10.13207/j.cnki.jnwafu.2004.05.014
      [32]
      徐世宏. 水稻水气平衡栽培法的研究[J]. 广西农学报, 2008, 23(2): 1-4. doi: 10.3969/j.issn.1003-4374.2008.02.001
      [33]
      PAN J F, LIU Y Z, ZHONG X H, et al. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China[J]. Agricultural Water Management, 2017, 184: 191-200. doi: 10.1016/j.agwat.2017.01.013
      [34]
      李香兰, 徐华, 蔡祖聪, 等. 水稻生长后期水分管理对CH4和N2O排放的影响[J]. 生态环境学报, 2009, 18(1): 332-336.
      [35]
      彭世彰, 杨士红, 徐俊增. 控制灌溉对稻田CH4和N2O综合排放及温室效应的影响[J]. 水科学进展, 2010, 21(2): 235-240.
      [36]
      袁伟玲, 曹凑贵, 程建平, 等. 间歇灌溉模式下稻田CH4和N2O排放及温室效应评估[J]. 中国农业科学, 2008, 41(12): 4294-4300.
      [37]
      TOWPRAYOON S, SMAKGAHN K, POONKAEW S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields[J]. Chemosphere, 2005, 59: 1547-1566.
      [38]
      钟旭华, 黄农荣, 郑海波, 等. 水稻“三控”施肥技术规程[J]. 广东农业科学, 2007, 34(5): 13-15.
      [39]
      钟旭华, 黄农荣, 胡学应. 水稻“三控”施肥技术[M].2版. 北京: 中国农业出版社, 2013.
      [40]
      FU Y Q, ZHONG X H, ZENG J H, et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China[J]. Journal of Integrative Agriculture, 2021, 20(2): 565-580. doi: 10.1016/S2095-3119(20)63380-9
      [41]
      周文涛, 龙文飞, 毛燕, 等. 节水轻简栽培模式下增密减氮对双季稻田温室气体排放的影响[J]. 应用生态学报, 2020, 31(8): 2604-2612.
      [42]
      ZHU X C, ZHANG J, ZHANG Z P, et al. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts[J]. The European Journal of Agronomy, 2016, 75: 50-59. doi: 10.1016/j.eja.2016.01.003
      [43]
      彭碧琳, 李妹娟, 胡香玉, 等. 轻简氮肥管理对华南双季稻产量和氮肥利用率的影响[J]. 中国农业科学, 2021, 54(7): 1424-1438. doi: 10.3864/j.issn.0578-1752.2021.07.009
      [44]
      潘俊峰, 刘彦卓, 梁开明, 等. 长期和短期减施磷肥对华南双季稻产量与磷肥利用的影响[J]. 作物杂志, 2022(5): 241-248.
      [45]
      黄继川, 彭智平, 徐培智, 等. 广东省水稻土有机质和氮、磷、钾肥力调查[J]. 广东农业科学, 2014, 41(6): 70-73. doi: 10.3969/j.issn.1004-874X.2014.06.019
      [46]
      张水清, 钟旭华, 黄农荣, 等. 稻草覆盖还田对水稻氮素吸收和氮肥利用率的影响[J]. 中国生态农业学报, 2010, 18(3): 611-616.
      [47]
      张水清, 钟旭华, 黄农荣, 等. 稻草覆盖还田对华南双季晚稻物质生产和产量的影响[J]. 中国水稻科学, 2011, 25(3): 284-290. doi: 10.3969/j.issn.1001-7216.2011.03.009
      [48]
      田卡, 钟旭华, 黄农荣, 等. 还田稻草的钾素利用及其增产效应研究[J]. 中国稻米, 2014, 20(3): 54-57. doi: 10.3969/j.issn.1006-8082.2014.03.012
      [49]
      田卡, 张丽, 钟旭华, 等. 稻草还田和冬种绿肥对华南双季稻产量及稻田CH4排放的影响[J]. 农业环境科学学报, 2015, 34(3): 592-598. doi: 10.11654/jaes.2015.03.024
      [50]
      王飞, 李清华, 何春梅, 等. 稻秆与紫云英联合还田提高黄泥田氮素利用率和土壤肥力[J]. 植物营养与肥料学报, 2021, 27(1): 66-74.
      [51]
      钟旭华, 梁开明, 潘俊峰, 等. 水稻低碳高产栽培技术及应用案例[M]. 北京: 中国农业出版社, 2022: 82.
      [52]
      骆世明. 生态农业发展的回顾与展望[J]. 华南农业大学学报, 2022, 43(4): 1-9.

    Catalog

      Article views (899) PDF downloads (41) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return