SUN Nan, WANG Mengyu, CHEN Jiaxin, et al. Inhibition activity of 4-O-α-thevetopyranosyldiphyllin on Spirogyra communis and its effect on chloroplast ultrastructure[J]. Journal of South China Agricultural University, 2024, 45(3): 371-380. DOI: 10.7671/j.issn.1001-411X.202306007
    Citation: SUN Nan, WANG Mengyu, CHEN Jiaxin, et al. Inhibition activity of 4-O-α-thevetopyranosyldiphyllin on Spirogyra communis and its effect on chloroplast ultrastructure[J]. Journal of South China Agricultural University, 2024, 45(3): 371-380. DOI: 10.7671/j.issn.1001-411X.202306007

    Inhibition activity of 4-O-α-thevetopyranosyldiphyllin on Spirogyra communis and its effect on chloroplast ultrastructure

    More Information
    • Received Date: June 18, 2023
    • Available Online: February 27, 2024
    • Published Date: March 14, 2024
    • Objective 

      The inhibition activity of 4-O-α-thevetopyranosyldiphyllin(TSC-3), extracted from Taiwania flousiana, on Spirogyra communis and its effect on S. communis chloroplast were investigated.

      Method 

      The IC50 of 4-O-α-thevetopyranosyldiphyllin on chlorophyll and carotenoids in S. communis were determined by the ethanol extraction-spectrophotometric method. The effects of 4-O-α-thevetopyranosyldiphyllin on the microstructure and ultrastructure of S. communis were observed using microscopy and transmission electron microscopy.

      Result 

      The IC50 of 4-O-α-thevetopyranosyldiphyllin on the contents of carotenoids, chlorophyll a, chlorophyll b and total pigments of S. communis after 7 d treatment were 3.41, 31.50, 47.34 and 29.30 mg·L−1, respectively. Further investigation showed that 4-O-α-thevetopyranosyldiphyllin could destroy the cells of S. communis, inducing broken cell wall, disappeared cell membrane, disintegrated chloroplast, completely disappeared thylakoids, dispersed starch granules, degraded and fragmented pyrenoids.

      Conclusion 

      4-O-α-thevetopyranosyldiphyllin can reduce the contents of chlorophyll a, chlorophyll b and carotenoids in S. communis. The inhibition rate of carotenoids was higher than those of the other pigments. 4-O-α-thevetopyranosyldiphyllin mainly acts on the chloroplasts and cell walls. This study provides a basis for further study of the molecular herbicidal mechanism of the plant-derived herbicidal chemical 4-O-α-thevetopyranosyldiphyllin, and also provides a theoretical basis for the control of aquatic algae.

    • [1]
      HEAP I. The international herbicide-resistant weed database[DB/OL]. [2023-06-01]. http://www.weedscience.org/Home.aspx.
      [2]
      HULME P E. Global drivers of herbicide-resistant weed richness in major cereal crops worldwide[J]. Pest Management Science, 2022, 78(5): 1824-1832. doi: 10.1002/ps.6800
      [3]
      DUKE S O, DAYAN F E. The search for new herbicide mechanisms of action: Is there a ‘holy grail’?[J]. Pest Management Science, 2022, 78(4): 1303-1313. doi: 10.1002/ps.6726
      [4]
      SPARKS T C, BRYANT R J. Impact of natural products on discovery of, and innovation in, crop protection compounds[J]. Pest Management Science, 2022, 78(2): 399-408. doi: 10.1002/ps.6653
      [5]
      LIU H M, HUANG J G, YANG S F, et al. Chemical composition, algicidal, antimicrobial, and antioxidant activities of the essential oils of Taiwania flousiana Gaussen[J]. Molecules, 2020, 25(4): 967. doi: 10.3390/molecules25040967
      [6]
      LIU L, ZHANG S, DAI W, et al. Comparing effects of berberine on the growth and photosynthetic activities of Microcystis aeruginosa and Chlorella pyrenoidosa[J]. Water Science and Technology, 2019, 80(6): 1155-1162. doi: 10.2166/wst.2019.357
      [7]
      陈世国, 强胜. 生物除草剂研究与开发的现状及未来的发展趋势[J]. 中国生物防治学报, 2015, 31(5): 770-779.
      [8]
      伏桂仙. 水生植物对城市富营养化水体的净化效果研究[D]. 扬州: 扬州大学, 2022.
      [9]
      孙万里. 大连地区稻田水绵危害性调查与防控方法比较研究[D]. 沈阳: 沈阳农业大学, 2018.
      [10]
      WANG W L, ZHU D R, LI L N, et al. Bioactive dimeric diterpenoids from Taiwania cryptomerioides (Hayata) and their biological activities[J]. Chemistry & Biodiversity, 2023, 20(2): e202201067.
      [11]
      NICOLAS W J, BAYER E, BROCARD L. Electron tomography to study the three-dimensional structure of plasmodesmata in plant tissues From high pressure freezing preparation to ultrathin section collection[J]. Bio-protocol, 2018, 8(1): e2681.
      [12]
      凡传明, 刘云国, 郭一明, 等. 水绵(Spirogyra)对蓝藻复苏及藻类群落结构的影响[J]. 环境科学学报, 2011, 31(10): 2132-2137.
      [13]
      JAFFER M, ASHRAF H, SHAHEEN S. Comparative analysis of bio-culturing of fresh water algae, Spirogyra communis (Hassall) Kützing and Hydrodictyon reticulatum L[J]. Bangladesh Journal of Botany, 2019, 48(4): 1125-1132. doi: 10.3329/bjb.v48i4.49068
      [14]
      SHERWOOD A R, NEUMANN J M, DITTBERN-WANG M, et al. Diversity of the green algal genus Spirogyra (Conjugatophyceae) in the Hawaiian Islands[J]. Phycologia, 2018, 57(3): 331-344. doi: 10.2216/17-111.1
      [15]
      SATI M, VERMA M, RAI J P N. Biosorption of Pb (II) by Spirogyra communis: Kinetics and isotherm model studies[J]. Pollution Research, 2015, 34(4): 707-712.
      [16]
      HE S, CRANS V L, JONIKAS M C. The pyrenoid: The eukaryotic CO2-concentrating organelle[J]. The Plant Cell, 2023, 35(9): 3236-3259. doi: 10.1093/plcell/koad157
      [17]
      LINES T, BEARDALL J. Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: Potential implications for species succession[J]. Journal of Phycology, 2018, 54(5): 599-607. doi: 10.1111/jpy.12770
      [18]
      SEAL T, HALDER N, CHAUDHURI K, et al. Effect of solvent extraction system on the antioxidant activities of algae[J]. International Journal of Pharmacy & Pharmaceutical Sciences, 2014, 6(10): 242-245.
      [19]
      GUO B, ZHAO M, WU Z, et al. 19-nor-pimaranes from Icacina trichantha[J]. Fitoterapia, 2020, 144: 104612. doi: 10.1016/j.fitote.2020.104612
      [20]
      DAI W, ZHANG J, TU Q, et al. Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication[J]. Chemosphere, 2017, 177(6): 317-325.
      [21]
      JOHNSON W C, LUO X L. Cool-season weed control using ammonium nonanoate and cultivation in organic Vidalia® sweet onion production[J]. Weed Technology, 2018, 32(1): 90-94. doi: 10.1017/wet.2017.91
      [22]
      ROMDHANE S, DEVERS-LAMRANI M, MARTIN-LAURENT F, et al. Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide[J]. Environmental Science and Pollution Research International, 2018, 25(30): 29848-29859. doi: 10.1007/s11356-017-9728-4
      [23]
      BURLACOT A, DAO O, AUROY P, et al. Alternative photosynthesis pathways drive the algal CO2 -concentrating mechanism[J]. Nature, 2022, 605: 366-371.
      [24]
      LIU Y, LI F, HUANG Q X et al. Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia[J]. Journal of Environmental Sciences, 2013, 25(4): 776-784. doi: 10.1016/S1001-0742(12)60112-0
      [25]
      YALÇIN S, KARAKAŞ Ö, OKUDAN E Ş, et al. HPLC detection and antioxidant capacity determination of brown, red and green algal pigments in seaweed extracts[J]. Journal of Chromatographic Science, 2021, 59(4): 325-337. doi: 10.1093/chromsci/bmaa107
    • Cited by

      Periodical cited type(25)

      1. 胡兰梅,王丽娜,钱正敏,曹成全,魏福伦,唐艳龙. 生物农药印楝素对三叶虫萤幼虫的毒力测定. 湖北植保. 2025(01): 31-33 .
      2. 李俊杰,杨晓燕,唐慧琳,高俊恒,郭子坤,郭春阳,王冬寒,叶佳成,袁向群,李怡萍. 抑肽酶对防治梨小食心虫的两种植物源农药的增效作用. 植物保护学报. 2025(01): 105-112 .
      3. 薛育,侯则颖,王新谱. 苜蓿根瘤象成虫防控药剂筛选及助剂增效作用. 农业科学研究(中英文). 2025(01): 53-58 .
      4. 周陈杰,马闪闪,洪庆红,鲁吐浦拉,王肖庆,吴凯蝶,江文楠,张羽菲,王圣印. 13种杀虫剂对木橑尺蠖的室内毒力测定及田间防效. 甘肃农业大学学报. 2024(02): 171-178 .
      5. 常向前,吕亮,郑正安,王晶,邓颍骏,杨小林,王佐乾,张舒. 四种助剂对防治褐飞虱的植物源农药1%印楝素水分散粒剂毒力的影响. 昆虫学报. 2024(04): 490-497 .
      6. 赵秋兰,潘美佳,刘红芳. 紫堇乙醇提取物对草地贪夜蛾的杀虫活性及其成分分析. 南方农业. 2024(11): 48-51 .
      7. 舒本水,黄玉婷,余萱悦,刘翠婷,谢心怡,沈皓,林进添. 印楝素胁迫下草地贪夜蛾幼虫实时荧光定量PCR内参基因表达稳定性评价. 广东农业科学. 2024(08): 21-30 .
      8. 刘锦霞,李晶,张丹丹,李娜,付麟雲,丁品,吴孔明. 11种植物源杀虫活性成分对草地贪夜蛾的毒力测定. 植物保护. 2023(01): 351-356 .
      9. 刘琴,杨云福,刘现平,刘丽,成虹,李雪娇. 不同生物农药防治草地贪夜蛾试验效果. 云南农业. 2023(05): 65-67 .
      10. 冯磊,唐圣松,刘芳,戴长庚,邢济春,李鸿波. 7种生物杀虫剂对草地贪夜蛾和粘虫幼虫的毒力与防效. 环境昆虫学报. 2022(01): 35-43 .
      11. 黄阿国. 闽南地区草地贪夜蛾监测与田间药剂防治效果研究. 现代农业科技. 2022(06): 74-75+84 .
      12. 夏丽娟,李靖,梁竟宇,王学贵,朱新成,李彬,李涌泉. 印楝素对亚洲玉米螟的毒力与防效及对寄主作物高粱的安全性评价. 南京农业大学学报. 2022(03): 539-544 .
      13. 郭志敏,吕海翔,马康生,万虎,郭子平,李建洪. 7种生物源杀虫剂对草地贪夜蛾的室内毒力研究. 安徽农业科学. 2022(19): 139-143 .
      14. 雷琼,林鑫,巨亚绒. 6种农药对陕西省关中地区草地贪夜蛾的田间药效试验. 农业工程. 2022(08): 131-134 .
      15. 何文,张秀芬,黄珍玲,黄小娟,蒋婷,郭素云. 两种植物源杀虫剂对甘薯小象甲的室内防效. 农业研究与应用. 2022(06): 32-36 .
      16. Jing WAN,HUANG Cong,LI Chang-you,ZHOU Hong-xu,REN Yong-lin,LI Zai-yuan,XING Long-sheng,ZHANG Bin,QIAO Xi,LIU Bo,LIU Cong-hui,XI Yu,LIU Wan-xue,WANG Wen-kai,QIAN Wan-qiang,Simon MCKIRDY,WAN Fang-hao. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda(Lepidoptera: Noctuidae). Journal of Integrative Agriculture. 2021(03): 646-663 .
      17. 太一梅,李志敏,朱晓明,刘萍,李貌,毕金华,朱斌. 生物农药对草地贪夜蛾的田间防治效果. 中国植保导刊. 2021(03): 66-68+77 .
      18. 汤云霞,桑芝萍,赵健,潘丹丹. 沿海地区7种生物农药防治玉米田草地贪夜蛾的药效试验简报. 上海农业科技. 2021(03): 111-112+114 .
      19. 范建,杜红莲,汉瑞林,杨继琼,马玉梅,周立为. 3种生物药剂对玉米草地贪夜蛾的防治效果. 云南农业科技. 2021(05): 34-35 .
      20. 陈秀琴,刘其全,田新湖,何玉仙,邱良妙,占志雄. 草地贪夜蛾生物防治研究进展. 福建农业学报. 2021(08): 981-988 .
      21. 邵雪花,赖多,匡石滋. FOXO基因对印楝素诱导sf9细胞凋亡的影响. 广东农业科学. 2021(11): 96-102 .
      22. 张海波,王风良,陈永明,于淦军,褚姝频,卢鹏,陈华,朱加萍,车晋英,张芳,周福才. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究. 植物保护. 2020(02): 254-260 .
      23. 梁沛,谷少华,张雷,高希武. 我国草地贪夜蛾的生物学、生态学和防治研究概况与展望. 昆虫学报. 2020(05): 624-638 .
      24. 葛阳,孙嘉惠,王铁霖,石旺鹏,袁庆军,郭兰萍. 药源植物在草地贪夜蛾防控中的应用研究进展. 植物保护学报. 2020(04): 706-718 .
      25. 刘丁予,李昂. 3种生物农药对草地贪夜蛾的防效试验. 云南农业科技. 2020(S1): 11-13 .

      Other cited types(18)

    Catalog

      Article views (192) PDF downloads (41) Cited by(43)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return