• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
HUANG Rong, DUAN Mingming, WEN Ke, et al. Effects of exogenous melatonin on seedling growth and physiological characteristics of soybean under copper stress[J]. Journal of South China Agricultural University, 2023, 44(5): 780-786. DOI: 10.7671/j.issn.1001-411X.202303027
Citation: HUANG Rong, DUAN Mingming, WEN Ke, et al. Effects of exogenous melatonin on seedling growth and physiological characteristics of soybean under copper stress[J]. Journal of South China Agricultural University, 2023, 44(5): 780-786. DOI: 10.7671/j.issn.1001-411X.202303027

Effects of exogenous melatonin on seedling growth and physiological characteristics of soybean under copper stress

More Information
  • Received Date: March 26, 2023
  • Available Online: November 12, 2023
  • Published Date: June 04, 2023
  • Objective 

    The effects of melatonin on the physiological properties of soybean (Glycine max (Linn.) Merr.) under copper (Cu) stress were investigated to provide some reference for the mitigation of heavy metal stress.

    Method 

    In a pot experiment, the Cu-sensitive variety ‘GuiZao 1’ and the Cu-tolerant variety ‘Brazil 13’ were selected and applied with 100 μmol·L−1 melatonin under 0.5 mmol·L−1 Cu stress to explore the effects of melatonin on soybean physiological indicators (root length, plant height, fresh weight, relative chlorophyll content and Cu content), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activities, malondialdehyde (MDA), soluble sugar and soluble protein contents.

    Result 

    Application of 100 μmol·L−1 melatonin under Cu stress increased the root length, plant height, fresh weight and relative chlorophyll content of both soybean varieties. The Cu contents in shoots and roots of both varieties were significantly reduced by melatonin treatment under Cu stress by 25.01% and 18.40% (‘GuiZao 1’), 26.84% and 20.28% (‘Brazil 13’), respectively. By applying melatonin under Cu stress, ‘GuiZao 1’ had a significant increase of POD activity in shoots by 48.35%, and ‘Brazil 13’ had a significant increase of CAT activity in roots by 56.84%; ‘GuiZao 1’ and ‘Brazil 13’ had significantly higher SOD activities in shoots by 19.07% and 7.30%, respectively; MDA content in shoots was significantly reduced by 8.05% and 26.56%. In the single application or mixed application under Cu stress, melatonin had no significant effect on the soluble protein contents of the two varieties. The amounts of soluble sugar in shoots of ‘GuiZao 1’ and ‘Brazil 13’ increased by 149.70% and 58.75% in the mixed application treatment under Cu stress.

    Conclusion 

    The appropriate concentrations of melatonin can mitigate the effects with Cu stress on soybean growth and development by improving antioxidant enzyme activity, inhibiting membrane lipid oxidation, reducing Cu uptake and increasing osmoregulatory substances.

  • [1]
    SCHWALBERT R, STEFANELLO L O, SCHWALBERT R A, et al. Soil tillage affects soybean growth and promotes heavy metal accumulation in seeds[J]. Ecotoxicology and Environmental Safety, 2021, 216: 112191. doi: 10.1016/j.ecoenv.2021.112191.
    [2]
    YRUELA I. Copper in plants: Acquisition, transport and interactions[J]. Functional Plant Biology, 2009, 36(5): 409-430. doi: 10.1071/FP08288
    [3]
    REHMAN M, LIU L, WANG Q, et al. Copper environmental toxicology, recent advances, and future outlook: A review[J]. Environmental Science and Pollution Research International, 2019, 26(18): 18003-18016. doi: 10.1007/s11356-019-05073-6
    [4]
    GOMES D G, DEBIASI T V, PELEGRINO M T, et al. Soil treatment with nitric oxide-releasing chitosan nanoparticles protects the root system and promotes the growth of soybean plants under copper stress[J]. Plants, 2022, 11(23): 3245. doi: 10.3390/plants11233245.
    [5]
    段文静, 孟妍君, 江丹, 等. 外源褪黑素对盐胁迫下棉花幼苗形态及抗氧化系统的影响[J]. 中国生态农业学报(中英文), 2022, 30(1): 92-104. doi: 10.12357/cjea.20210411
    [6]
    ACUÑA-CASTROVIEJO D, MARTÍN M, MACÍAS M, et al. Melatonin, mitochondria, and cellular bioenergetics[J]. Journal of Pineal Research, 2001, 30(2): 65-74. doi: 10.1034/j.1600-079X.2001.300201.x
    [7]
    GAO Y, WANG Y, QIAN J, et al. Melatonin enhances the cadmium tolerance of mushrooms through antioxidant-related metabolites and enzymes[J]. Food Chemistry, 2020, 330: 127263. doi: 10.1016/j.foodchem.2020.127263.
    [8]
    SHARIF R, XIE C, ZHANG H, et al. Melatonin and its effects on plant systems[J]. Molecules, 2018, 23(9): 2352. doi: 10.3390/molecules23092352.
    [9]
    GALANO A, TAN D X, REITER R J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK[J]. Journal of Pineal Research, 2013, 54(3): 245-257. doi: 10.1111/jpi.12010
    [10]
    杜昕, 李博, 毛鲁枭, 等. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022(1): 174-178.
    [11]
    JAHAN M S, SHU S, WANG Y, et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis[J]. BMC Plant Biology, 2019, 19(1): 414. doi: 10.1186/s12870-019-1992-7.
    [12]
    TURK H, ERDAL S, GENISEL M, et al. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings[J]. Plant Growth Regulation, 2014, 74(2): 139-152. doi: 10.1007/s10725-014-9905-0
    [13]
    陈丽珊, 周红艳, 林伟伟. 外源褪黑素对盐胁迫下水稻苗期碳氮代谢的影响[J/OL]. 生态学杂志, 2022: 1-11. https://kns.cnki.net/kcms/detail/21.1148.Q.20220917.1053.004.html.
    [14]
    张明聪, 何松榆, 秦彬, 等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
    [15]
    WEI J, LIANG J, LIU D, et al. Melatonin-induced physiology and transcriptome changes in banana seedlings under salt stress conditions[J]. Frontiers in Plant Science, 2022, 13: 938262. doi: 10.3389/fpls.2022.938262.
    [16]
    ZENG Q Y, YANG C Y, MA Q B, et al. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress[J]. BMC Plant Biology, 2012, 12: 182. doi: 10.1186/1471-2229-12-182.
    [17]
    WEN K, LI X, HUANG R, et al. Application of exogenous glutathione decreases chromium translocation and alleviates its toxicity in soybean (Glycine max L.)[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113405. doi: 10.1016/j.ecoenv.2022.113405.
    [18]
    王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006: 132-181.
    [19]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 142-218.
    [20]
    熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003: 81-83.
    [21]
    蔡琪琪, 王堽, 董寅壮, 等. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022(1): 130-136. doi: 10.16035/j.issn.1001-7283.2022.01.019
    [22]
    ANDRADE F R, DA SILVA G N, GUIMARÃES K C, et al. Selenium protects rice plants from water deficit stress[J]. Ecotoxicology and Environmental Safety, 2018, 164: 562-570. doi: 10.1016/j.ecoenv.2018.08.022
    [23]
    WU C, CAO S, XIE K, et al. Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure[J]. Postharvest Biology and Technology, 2021, 172: 111378. doi: 10.1016/j.postharvbio.2020.111378.
    [24]
    CUI G, ZHAO X, LIU S, et al. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings[J]. Plant Physiology and Biochemistry, 2017, 118: 138-149. doi: 10.1016/j.plaphy.2017.06.014
    [25]
    CORNEJO J, TAPIA J, GUERRA F, et al. Variation in copper accumulation at the tissue level of five hybrid poplars subjected to copper stress[J]. Water Air and Soil Pollution, 2017, 228(6): 212. doi: 10.1007/s11270-017-3384-7.
    [26]
    JALMI S K, BHAGAT P K, VERMA D, et al. Traversing the links between heavy metal stress and plant signaling[J]. Frontiers in Plant Science, 2018, 9: 12. doi: 10.3389/fpls.2018.00012.
    [27]
    CAO Y, QI C, LI S, et al. Melatonin alleviates copper toxicity via improving copper sequestration and ROS scavenging in cucumber[J]. Plant and Cell Physiology, 2019, 60(3): 562-574. doi: 10.1093/pcp/pcy226
    [28]
    XIA H, SHEN Y, DENG H, et al. Melatonin application improves berry coloration, sucrose synthesis, and nutrient absorption in ‘Summer Black’ grape[J]. Food Chemistry, 2021, 356: 129713. doi: 10.1016/j.foodchem.2021.129713.
  • Cited by

    Periodical cited type(6)

    1. 赵长延,柳延涛,贾秀苹,刘胜利,雷中华,王鹏,朱志锋,董红业,吕增帅,段维,万素梅. 盐碱胁迫下褪黑素对作物生理机制影响的研究进展. 生物技术通报. 2025(02): 18-29 .
    2. 郭远航,王洪博,白宝伟,张磊,赵丰年,吕东雪,贾婷,王兴鹏. 外源褪黑素对大豆幼苗盐胁迫的缓解效应. 华北农学报. 2024(02): 116-125 .
    3. 刘晓蕾,刘飞飞,程相涵,王书言,寇太记. 外源褪黑素对小麦缓解土壤铜胁迫的影响. 农业科学研究. 2024(02): 8-15 .
    4. 张婷婷,刘宇乐,陈红,许凌欣,陈祥伟,王恩姮,严俊鑫. 不同外源物质对盐、碱及干旱胁迫下草木樨种子萌发、幼苗生长及生理的影响. 草业学报. 2024(08): 122-132 .
    5. 李傲宇,李瑞敏,陈翼芝,于爽. 外源水杨酸、褪黑素对盐胁迫下大豆种子萌发和幼苗生长的影响. 安徽农学通报. 2024(19): 31-36 .
    6. 王彪,宋世佳,李东晓,董伟欣,张月辰. 褪黑素通过H_2O_2调控盐胁迫下小豆Na~+/K~+平衡机制. 华北农学报. 2023(06): 62-71 .

    Other cited types(5)

Catalog

    Article views (105) PDF downloads (14) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return