Citation: | LIU Qingting, HU Ping, ZHENG Mingxuan, et al. Research on crop tissue structure and mechanical properties[J]. Journal of South China Agricultural University, 2024, 45(3): 446-456. DOI: 10.7671/j.issn.1001-411X.202303006 |
Crop mechanical properties are intrinsically related to its morphological structure, microstructure and compound composition, and traditional macroscopic mechanical test methods cannot resolve the relationship. The development of microscopic image acquisition and processing technology and finite element simulation has led to a new approach to study on crop mechanics at multiple scales. The study of the structure and mechanical properties of crop tissue is an important part of crop mechanics at multiple scales. This paper reviewed the current status and development of research on the multi-scale structural mechanics of crop tissue from three aspects: Morphological structure and geometric model construction methods, mechanical models and its solution method, and mechanical performance experiment methods of crop tissue, and pointed out their current shortcomings from those three aspects. The prospects for conducting multi-scale structural mechanics research were also presented.
[1] |
BAKER C J, STERLING M, BERRY P. A generalised model of crop lodging[J]. Journal of Theoretical Biology, 2014, 363: 1-12. doi: 10.1016/j.jtbi.2014.07.032
|
[2] |
黄玲, 杨文平, 梅沛沛, 等. 砂质脱潮土区不同冬小麦品种(系)抗倒伏特性研究[J]. 灌溉排水学报, 2021, 40(3): 31-39. doi: 10.13522/j.cnki.ggps.2020420
|
[3] |
尹伊君. 宽皮柑橘压缩损伤特性与机械损伤评估研究[D]. 武汉: 华中农业大学, 2018.
|
[4] |
周霞, 李东嵘, 蒋静, 等. 紫花苜蓿根系拉拔试验研究[J]. 人民长江, 2019, 50(7): 185-188. doi: 10.16232/j.cnki.1001-4179.2019.07.032
|
[5] |
刘庆庭, 区颖刚, 卿上乐, 等. 光刃刀片切割甘蔗茎秆时根茬破坏力学分析[J]. 农业机械学报, 2007, 38(9): 51-54. doi: 10.3969/j.issn.1000-1298.2007.09.013
|
[6] |
LIU Q T, OU Y G, WANG W Z, et al. The mechanical properties and constitutive equations of sugarcane stalk[C]//ASABE Annual International Meeting. Minneapolis, Minnesota: American Society of Agricultural and Biological Engineers, 2007.
|
[7] |
VON FORELL G, ROBERTSON D, LEE S Y, et al. Preventing lodging in bioenergy crops: A biomechanic alanalysis of maize stalks suggests a new approach[J]. Journal of Experimental Botany, 2015, 66(14): 4367-4371. doi: 10.1093/jxb/erv108
|
[8] |
汪宁陵. 王棕组织多尺度结构力学建模方法及仿王棕结构设计研究[D]. 广州: 华南理工大学, 2016.
|
[9] |
张凌. 一种植物组织二维重建算法及仿王棕叶柄的蜂窝梁设计[D]. 广州: 华南理工大学, 2019.
|
[10] |
张亮. 谷子茎秆与纤维拉伸力学特性测试研究[D]. 太谷: 山西农业大学, 2019.
|
[11] |
李红波, 薛晋霞, 王炳轩, 等. 谷子茎秆叶鞘叶片及其结合部位的拉伸力学性能[J]. 农业工程学报, 2020, 36(18): 11-17. doi: 10.11975/j.issn.1002-6819.2020.18.002
|
[12] |
刘亮亮, 田杰, 杨皓翔, 等. 拟南芥花萼尖端褶皱现象的测量和分析[J]. 实验力学, 2020, 35(6): 970-977. doi: 10.7520/1001-4888-19-219
|
[13] |
BRUCE D M. Mathematical modelling of the cellular mechanics of plants[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2003, 358(1437): 1437-1444.
|
[14] |
ASTLEY R, HARRINGTON J, STOL K. Mechanical modelling of wood microstructure, an engineering approach[J]. Ipenz Transactions, 1997, 24(1): 21-29.
|
[15] |
RÜGGEBERG M, SPECK T, PARIS O, et al. Stiffness gradients in vascular bundles of the palm Washingtonia robusta[J]. Proceedings Biological Sciences, 2008, 275(1648): 2221-2229.
|
[16] |
WATANABE U. Shrinking and elastic properties of coniferous wood in relation to cellular structure[D]. Kyoto: Kyoto University, 1998.
|
[17] |
PITT R E. Models for the rheology and statistical strength of uniformly stressed vegetative tissue[J]. Transactions of the ASAE, 1982, 25(6): 1776-1784. doi: 10.13031/2013.33805
|
[18] |
MILES J A, REHKUGLER G E. A failure criterion for apple flesh[J]. Transactions of the ASAE, 1973, 16(6): 1148-1153. doi: 10.13031/2013.37719
|
[19] |
GIBSON L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society, Interface, 2012, 9(76): 2749-2766. doi: 10.1098/rsif.2012.0341
|
[20] |
GHOSH S, LEE K, MOORTHY S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 132(1/2): 63-116.
|
[21] |
SILVA M J, HAYES W C, GIBSON L J. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids[J]. International Journal of Mechanical Sciences, 1995, 37(11): 1161-1177. doi: 10.1016/0020-7403(94)00018-F
|
[22] |
GOLOVIN Y I, GUSEV A A, MATVEEV S M. From nano-to macromechanical properties of wood via the hierarchy of its structural units and size effects (A Review)[J]. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86(10): 1207-1218.
|
[23] |
LIVANI M A, SUIKER A S J, CRIVELLARO A, et al. A 3D multi-scale hygro-mechanical model of oak wood[J]. Wood Science and Technology, 2023, 57(6): 1215-1256.
|
[24] |
VORONOI G. Nouvelles applications des paramètrescontinus à la théorie deforme squad ratiques[J]. Journal Für Die Reine Und Angewandte Mathematik(Cell Journal), 1908, 1908(134): 198-287.
|
[25] |
ROUDOT A, DUPRAT F, PIETRI E. Simulation of a penetrometric test on apples using voronoi-delaunay tessellation[J]. Food Structure, 1990, 9(3): 215-222.
|
[26] |
FAISAL T R, HRISTOZOV N, WESTERN T L, et al. Computational study of the elastic properties of Rheum rhabarbarum tissues via surrogate models of tissue geometry[J]. Journal of Structural Biology, 2014, 185(3): 285-294. doi: 10.1016/j.jsb.2014.01.012
|
[27] |
ILINCANU L A, OLIVEIRA F A R. Strategy for controlling thermal processes in case of random fluctuations of the heating-medium temperature[J]. Process Optimisation and Minimal Processing of Foods, 1996, 3: 106-110.
|
[28] |
FAISAL T R, HRISTOZOV N, REY A D, et al. Experimental determination of Philodendron melinonii and Arabidopsis thaliana tissue microstructure and geometric modeling via finite-edge centroidal Voronoi tessellation[J]. Physical Review E, 2012, 86(3): 031921. doi: 10.1103/physreve.86.031921.
|
[29] |
LIU W Y, ZHANG L, HUANG J L, et al. Reconstruction of plant microstructure using distance weighted tessellation algorithm optimized by virtual segmentation[J]. Journal of Structural Biology, 2019, 208(2): 115-126. doi: 10.1016/j.jsb.2019.08.008
|
[30] |
PIECZYWEK P M, ZDUNEK A, UMEDA M. Study on parameterisation of plant tissue microstructure by confocal microscopy for finite elements modelling[J]. Computers and Electronics in Agriculture, 2011, 78(1): 98-105. doi: 10.1016/j.compag.2011.06.006
|
[31] |
HUANG J L, LIU W Y, ZHOU F, et al. Mechanical properties of maize fibre bundles and their contribution to lodging resistance[J]. Biosystems Engineering, 2016, 151: 298-307. doi: 10.1016/j.biosystemseng.2016.09.016
|
[32] |
MEBATSION H K, VERBOVEN P, HO Q T, et al. Microscale modelling of fruit tissue using Voronoi tessellations[C]//13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006: 673-685.
|
[33] |
MEBATSION H K, VERBOVEN P, VERLINDEN B E, et al. Modeling fruit microstructure using an ellipse tessellation algorithm[C]//13th World Congress of Food Science & Technology. Nantes, France: EDP Sciences, 2006: 673-685.
|
[34] |
KERTESZ Z I. The pectic substances[M]. New York: Interscience Publishers, 1951.
|
[35] |
付志一, 焦群英. 植物细胞力学模型研究进展[J]. 力学进展, 2005, 35(3): 404-410. doi: 10.3321/j.issn:1000-0992.2005.03.010
|
[36] |
WU N Q, PITTS M J. Development and validation of a finite element model of an apple fruit cell[J]. Postharvest Biology and Technology, 1999, 16(1): 1-8. doi: 10.1016/S0925-5214(98)00095-7
|
[37] |
DINTWA E, VAN ZEEBROECK M, RAMON H, et al. Finite element analysis of the dynamic collision of apple fruit[J]. Postharvest Biology and Technology, 2008, 49(2): 260-276. doi: 10.1016/j.postharvbio.2008.01.012
|
[38] |
DINTWA E, JANCSÓK P, MEBATSION H K, et al. A finite element model for mechanical deformation of single tomato suspension cells[J]. Journal of Food Engineering, 2011, 103(3): 265-272. doi: 10.1016/j.jfoodeng.2010.10.023
|
[39] |
HO Q T, VERBOVEN P, VERLINDEN B E, et al. A model for gas transport in pear fruit at multiple scales[J]. Journal of Experimental Botany, 2010, 61(8): 2071-2081. doi: 10.1093/jxb/erq026
|
[40] |
HO Q T, VERBOVEN P, VERLINDEN B E, et al. A three-dimensional multiscale model for gas exchange in fruit[J]. Plant Physiology, 2011, 155(3): 1158-1168. doi: 10.1104/pp.110.169391
|
[41] |
PALOMBINI F L, KINDLEIN W, DE OLIVEIRA B F, et al. Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography[J]. Materials Characterization, 2016, 120: 357-368. doi: 10.1016/j.matchar.2016.09.022
|
[42] |
QING H, MISHNAEVSKY L. 3D multiscale micromechanical model of wood: From annual rings to microfibrils[J]. International Journal of Solids and Structures, 2010, 47(9): 1253-1267. doi: 10.1016/j.ijsolstr.2010.01.014
|
[43] |
RATHNAYAKA MUDIYANSELAGE C M R, KARUNASENA H C P, GU Y T, et al. Novel trends in numerical modelling of plant food tissues and their morphological changes during drying: A review[J]. Journal of Food Engineering, 2017, 194: 24-39. doi: 10.1016/j.jfoodeng.2016.09.002
|
[44] |
LOODTS J, TIJSKENS E, WEI C F, et al. Micromechanics: Simulating the elastic behavior of onion epidermis tissue[J]. Journal of Texture Studies, 2006, 37(1): 16-34. doi: 10.1111/j.1745-4603.2006.00036.x
|
[45] |
VAN LIEDEKERKE P, GHYSELS P, TIJSKENS E, et al. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates[J]. Physical Biology, 2010, 7(2): 026006. doi: 10.1088/1478-3975/7/2/026006.
|
[46] |
VAN LIEDEKERKE P, TIJSKENS E, RAMON H, et al. Particle-based model to simulate the micromechanics of biological cells[J]. Physical Review E, 2010, 81(6): 061906. doi: 10.1103/physreve.81.061906.
|
[47] |
VAN LIEDEKERKE P, GHYSELS P, TIJSKENS E, et al. Mechanisms of soft cellular tissue bruising: A particle based simulation approach[J]. Soft Matter, 2011, 7(7): 3580-3591. doi: 10.1039/C0SM01261K.
|
[48] |
KARUNASENA H C P, BROWN R J, GU Y T, et al. Application of meshfree methods to numerically simulate microscale deformations of different plant food materials during drying[J]. Journal of Food Engineering, 2015, 146: 209-226. doi: 10.1016/j.jfoodeng.2014.09.011
|
[49] |
PITT R E, DAVIS D C. Finite element analysis of fluid-filled cell response to external loading[J]. Transactions of the ASAE, 1984, 27(6): 1976-1983. doi: 10.13031/2013.33081
|
[50] |
LIU S B, YANG H Q, BIAN Z T, et al. Regulation on mechanical properties of spherically cellular fruits under osmotic stress[J]. Journal of the Mechanics and Physics of Solids, 2019, 127: 182-190. doi: 10.1016/j.jmps.2019.03.007
|
[51] |
NILSSON S B, HERTZ C H, FALK S. On the relation between turgor pressure and tissue rigidity: II: Theoretical calculations on model systems[J]. Physiologia Plantarum, 1958, 11(4): 818-837. doi: 10.1111/j.1399-3054.1958.tb08275.x
|
[52] |
PITT R E, CHEN H L. Time-dependent aspects of the strength and rheology of vegetative tissue[J]. Transactions of the ASAE, 1983, 26(4): 1275-1280. doi: 10.13031/2013.34116
|
[53] |
GAO Q, PITT R E. A mechanics model of the compression of cells with finite initial contact area[J]. Biorheology, 1990, 27(2): 225-240. doi: 10.13031/2013.31651
|
[54] |
ZHU H X, MELROSE J R. A mechanics model for the compression of plant and vegetative tissues[J]. Journal of Theoretical Biology, 2003, 221(1): 89-101. doi: 10.1006/jtbi.2003.3173
|
[55] |
MURASE H, MERVA G E. Static elastic modulus of tomato epidermis as affected by water potential[J]. Transactions of the ASAE, 1977, 20(3): 594-597. doi: 10.13031/2013.35606
|
[56] |
MURASE H, MERVA G E, SEGERLIND L J. Variation of young’s modulus of potato as a function of water potential[J]. Transactions of the ASABE, 1980, 23(3): 794-796. doi: 10.13031/2013.34664
|
[57] |
MYHAN R, MARKOWSKI M, JACHIMCZYK E. A non-linear rheological model of plant tissues[J]. Biosystems Engineering, 2020, 190: 1-10. doi: 10.1016/j.biosystemseng.2019.11.018
|
[58] |
MYHAN R, MARKOWSKI M. The compression specificity of plant tissue[J]. Journal of Texture Studies, 2020, 51(4): 593-600. doi: 10.1111/jtxs.12512
|
[59] |
BÖL M, SEYDEWITZ R, LEICHSENRING K, et al. A phenomenological model for the inelastic stress-strain response of a potato tuber[J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103870. doi: 10.1016/j.jmps.2020.103870.
|
[60] |
SONG R Y, MULIANA A. Modeling mechanical behaviors of plant stems undergoing microstructural changes[J]. Mechanics of Materials, 2019, 139: 103175. doi: 10.1016/j.mechmat.2019.103175.
|
[61] |
DAVIES G C, BRUCE D M. A stress analysis model for composite coaxial cylinders[J]. Journal of Materials Science, 1997, 32(20): 5425-5437. doi: 10.1023/A:1018691500653
|
[62] |
YAMAMOTO H, KOJIMA Y. Properties of cell wall constituents in relation to longitudinal elasticity of wood[J]. Wood Science and Technology, 2002, 36(1): 55-74. doi: 10.1007/s00226-001-0128-y
|
[63] |
ONGARO F, BARBIERI E, PUGNO N M. Mechanics of mutable hierarchical composite cellular materials[J]. Mechanics of Materials, 2018, 124: 80-99. doi: 10.1016/j.mechmat.2018.05.006
|
[64] |
GHYSELS P, SAMAEY G, TIJSKENS B, et al. Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics[J]. Physical Biology, 2009, 6(1): 016009. doi: 10.1088/1478-3975/6/1/016009.
|
[65] |
WANG N L, LIU W Y, HUANG J L, et al. The structure-mechanical relationship of palm vascular tissue[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 36: 1-11. doi: 10.1016/j.jmbbm.2014.04.001
|
[66] |
AREGAWI W A, ABERA M K, FANTA S W, et al. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model[J]. Journal of Physics: Condensed Matter, 2014, 26(46): 464111. doi: 10.1088/0953-8984/26/46/464111.
|
[67] |
刘穆. 种子植物形态解剖学导论[M]. 4版. 北京: 科学出版社, 2008.
|
[68] |
李素坤, 张秋芝, 郝玉兰, 等. 玉米成熟期茎秆石蜡切片方法的研究[J]. 安徽农业科学, 2010, 38(8): 3935-3937. doi: 10.3969/j.issn.0517-6611.2010.08.031
|
[69] |
梁艳, 刘德强, 潘朋, 等. 带有愈伤组织的红松种子石蜡切片制作方法改良[J]. 分子植物育种, 2022, 20(13): 4455-4461. doi: 10.13271/j.mpb.020.004455
|
[70] |
陆叶, 席梦利, 郑佳, 等. 杨树和杉木茎段组织的冰冻切片技术研究[J]. 南京林业大学学报(自然科学版), 2009, 33(6): 44-48.
|
[71] |
宁代锋, 尹增芳, 张菁, 等. 一种简单快速植物组织冰冻切片方法[J]. 热带亚热带植物学报, 2008, 1(4): 386-389. doi: 10.3969/j.issn.1005-3395.2008.04.018
|
[72] |
李建霞, 张出兰, 夏晓飞, 等. 植物冰冻切片条件的优化及其与石蜡切片在组织化学应用中的比较[J]. 植物学报, 2013, 48(6): 643-650.
|
[73] |
金嘉陵. 扫描电镜分析的基本原理[J]. 上海钢研, 1978(1): 29-45.
|
[74] |
陆彦, 祁琰, 张晓敏, 等. 高水分、富含淀粉植物组织的扫描电镜制备技术优化[J]. 植物科学学报, 2018, 36(1): 119-126. doi: 10.11913/PSJ.2095-0837.2018.10119
|
[75] |
李艳聪, 杜晓勇, 王金海, 等. 苹果损伤力学特性[J]. 农业工程, 2018, 8(6): 77-80. doi: 10.3969/j.issn.2095-1795.2018.06.021
|
1. |
李延实,李成芳. 不同再生稻栽培模式氮足迹及经济效益评估. 中国生态农业学报(中英文). 2024(04): 582-591 .
![]() | |
2. |
潘丽燕,谢鸿光,沈绪波,黄康德,徐淑英. 优质香型水稻新品种福玉香占的选育与应用. 福建农业科技. 2023(12): 62-66 .
![]() |