Citation: | FU Yu, ZHAO Hongyuan, XIAO Mengnan, et al. Research progress on elongation of cooked rice[J]. Journal of South China Agricultural University, 2023, 44(5): 670-678. DOI: 10.7671/j.issn.1001-411X.202302012 |
Cooked rice elongation (CRE) refers to the elongation characteristics of rice grains during cooking, is evaluated by the ratio of the added value of rice grain length after cooking to the length of rice grain before cooking. It is one of the important indicators of cooking and eating quality. With the development of modern genetics and genomics related theories and breeding technology, the genetic research of CRE has also become increasingly in-depth. In this paper, the related factors affecting CRE and the main progress of genetic research on CRE were summarized, the existing problems of genetic research on CRE were also pointed out, and the prospects of genetic research on CRE were analyzed.
[1] |
SINGH N, KAUR L, SODHI N S, et al. Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars[J]. Food Chemistry, 2005, 89(2): 253-259. doi: 10.1016/j.foodchem.2004.02.032
|
[2] |
张桂权. 5G水稻的演变和发展[J]. 华南农业大学学报, 2019, 40(5): 211-216. doi: 10.7671/j.issn.1001-411X.201905075
|
[3] |
袁隆平. 超级杂交水稻育种研究新进展[J]. 中国农村科技, 2010(Z1): 24-25. doi: 10.3969/j.issn.1005-9768.2010.02.006
|
[4] |
方志强, 陆展华, 王石光, 等. 稻米品质性状研究进展与应用[J]. 广东农业科学, 2020, 47(5): 11-20. doi: 10.16768/j.issn.1004-874X.2020.05.002
|
[5] |
莫惠栋. 我国稻米品质的改良[J]. 中国农业科学, 1993, 26(4): 8-14.
|
[6] |
王慧, 张从合, 陈金节, 等. 稻米品质性状影响因素及相关基因研究进展[J]. 中国稻米, 2018, 24(4): 16-21. doi: 10.3969/j.issn.1006-8082.2018.04.004
|
[7] |
程鸿燕, 韩渊怀. 大米食味品质的研究及其育种进展[J]. 山西农业大学学报(自然科学版), 2016, 36(12): 890-896. doi: 10.13842/j.cnki.issn1671-8151.2016.12.023
|
[8] |
DOU Z, TANG S, CHEN W, et al. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta[J]. Journal of Cereal Science, 2018, 81: 118-126. doi: 10.1016/j.jcs.2018.04.004
|
[9] |
何予卿, 邢永忠, 葛小佳, 等. 水稻米饭延伸指数相关性状的基因定位研究[J]. 分子植物育种, 2003, 1(5/6): 613-619. doi: 10.3969/j.issn.1672-416X.2003.05.004
|
[10] |
KHUSH G S, PAULE C M, CRUZ N D. Rice grain quality evaluation and improvement at IRRI[M]//Chemical Aspects of Rice Grain Quality. Los Baños, Laguna, Philippines: Proceedings of a Workshop, International Rice Research Institute, 1979: 21-31.
|
[11] |
汤圣祥. 我国杂交水稻蒸煮与食用品质的研究[J]. 中国农业科学, 1987, 20(5): 17-22.
|
[12] |
TAN Y F, XING Y Z, LI J X, et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid[J]. Theoretical and Applied Genetics, 2000, 101(5): 823-829.
|
[13] |
TIAN Z, QIAN Q, LIU Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765. doi: 10.1073/pnas.0912396106
|
[14] |
JULIANO B O, PEREZ C M. Results of a collaborative test on the measurement of grain elongation of milled rice during cooking[J]. Journal of Cereal Science, 1984, 2(4): 281-292. doi: 10.1016/S0733-5210(84)80016-8
|
[15] |
VIVEKANADAN P, GIRIDHARAN S. Genetic variability and character association for kernel and cooking quality traits in rice[J]. Oryza, 1998, 35(3): 242-245.
|
[16] |
包劲松, 谢建坤, 夏英武. 籼稻米粒延伸性的遗传研究[J]. 作物学报, 2001, 27(4): 489-492. doi: 10.3321/j.issn:0496-3490.2001.04.014
|
[17] |
LI J M, XIAO J H, GRANDILLO S, et al. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L. ) and African (O. glaberrima S. ) rice[J]. Genome, 2004, 47(4): 697-704. doi: 10.1139/g04-029
|
[18] |
张光恒, 曾大力, 郭龙彪, 等. 水稻米粒延伸性的遗传剖析[J]. 遗传, 2004, 26(6): 887-892. doi: 10.3321/j.issn:0253-9772.2004.06.021
|
[19] |
沈圣泉, 庄杰云, 王淑珍, 等. 水稻米粒延伸性QTLs定位和基因型与环境互作分析[J]. 中国水稻科学, 2005, 19(4): 319-322. doi: 10.3321/j.issn:1001-7216.2005.04.006
|
[20] |
GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005, 124(2): 121-126. doi: 10.1111/j.1439-0523.2004.01055.x
|
[21] |
TIAN R, JIANG G, SHEN L, et al. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population[J]. Molecular Breeding, 2005, 15(2): 117-124. doi: 10.1007/s11032-004-3270-z
|
[22] |
陆贤军, 康海岐, 姜华, 等. 水稻核心种质及成恢448回交后代的稻米延伸性研究[J]. 分子植物育种, 2005, 3(5): 676-680. doi: 10.3969/j.issn.1672-416X.2005.05.014
|
[23] |
WANG Y, LI J. Genes controlling plant architecture[J]. Current Opinion in Biotechnology, 2006, 17(2): 123-129. doi: 10.1016/j.copbio.2006.02.004
|
[24] |
康海岐, 陆贤军, 高方远, 等. 成恢448与Basmati 370回交后代的米粒延伸性遗传和相关分析[J]. 作物学报, 2006, 32(9): 1361-1370. doi: 10.3321/j.issn:0496-3490.2006.09.016
|
[25] |
AMARAWATHI Y, SINGH R, SINGH A K, et al. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L. )[J]. Molecular Breeding, 2007, 21(1): 49-65. doi: 10.1007/s11032-007-9108-8
|
[26] |
WANG L Q, LIU W J, XU Y, et al. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain[J]. Theoretical and Applied Genetics, 2007, 115(4): 463-476. doi: 10.1007/s00122-007-0580-7
|
[27] |
姜树坤, 黄成, 徐正进, 等. 粳稻米粒延伸性的QTL剖析[J]. 植物生理学报, 2008, 44(6): 1091-1094. doi: 10.13592/j.cnki.ppj.2008.06.022
|
[28] |
LIU L L, YAN X Y, JIANG L, et al. Identification of stably expressed quantitative trait loci for cooked rice elongation in non-Basmati varieties[J]. Genome, 2008, 51(2): 104-112. doi: 10.1139/G07-106
|
[29] |
GOVINDARAJ P, VINOD K K, ARUMUGACHAMY S, et al. Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping[J]. Euphytica, 2009, 166(2): 165-176. doi: 10.1007/s10681-008-9808-0
|
[30] |
沈年伟, 来凯凯, 粘金沯, 等. 稻米出饭特性QTL分析及遗传研究[J]. 中国水稻科学, 2011, 25(5): 475-482. doi: 10.3969/j.issn.1001-7216.2011.05.004
|
[31] |
SWAMY B P M, KALADHAR K, RANI N S, et al. QTL analysis for grain quality traits in 2 BC2F2 populations derived from crosses between Oryza sativa cv Swarna and 2 accessions of O. nivara[J]. Journal of Heredity, 2012, 103(3): 442-452. doi: 10.1093/jhered/esr145
|
[32] |
HOSSEINI M, HOUSHMAND S, MOHAMADI S, et al. Detection of QTLs with main, epistatic and QTL × environment interaction effects for rice grain appearance quality traits using two populations of backcross inbred lines (BILs)[J]. Field Crops Research, 2012, 135: 97-106. doi: 10.1016/j.fcr.2012.07.009
|
[33] |
YANG D, ZHANG Y, ZHU Z, et al. Substitutional mapping the cooked rice elongation by using chromosome segment substitution lines in rice[J]. Molecular Plant Breeding, 2013, 4: 107-115.
|
[34] |
CHENG A, ISMAIL I, OSMAN M, et al. Mapping of quantitative trait loci for aroma, amylose content and cooked grain elongation traits in rice[J]. Plant Omics Journal, 2014, 7(3): 152-157.
|
[35] |
RATHI S, PATHAK K, YADAV R N S, et al. Association studies of dormancy and cooking quality traits in direct-seeded indica rice[J]. Journal of Genetics, 2014, 93(1): 3-12. doi: 10.1007/s12041-014-0319-6
|
[36] |
LI Y, TAO H, XU J, et al. QTL analysis for cooking traits of super rice with a high-density SNP genetic map and fine mapping of a novel boiled grain length locus[J]. Plant Breeding, 2015, 134(5): 535-541. doi: 10.1111/pbr.12294
|
[37] |
OKPALA N E, DUAN L, SHEN G, et al. Identification of putative metabolic biomarker underlying cooked rice elongation[J]. Plant Omics, 2017, 10(3): 164-168. doi: 10.21475/poj.10.03.17.pne670
|
[38] |
SINGH V, SINGH A K, MOHAPATRA T, et al. Pusa Basmati 1121: A rice variety with exceptional kernel elongation and volume expansion after cooking[J]. Rice, 2018, 11: 19. doi: 10.1038/s41598-019-44856-2
|
[39] |
ARIKIT S, WANCHANA S, KHANTHONG S, et al. QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.)[J]. Scientific Reports, 2019, 9: 8328.
|
[40] |
KATO K, SUZUKI Y, HOSAKA Y, et al. Effect of high temperature on starch biosynthetic enzymes and starch structure in japonica rice cultivar ‘Akitakomachi’ (Oryza sativa L.) endosperm and palatability of cooked rice[J]. Journal of Cereal Science, 2019, 87: 209-214. doi: 10.1016/j.jcs.2019.04.001
|
[41] |
OKPALA N E, POTCHO M P, AN T Y, et al. Low temperature increased the biosynthesis of 2-AP, cooked rice elongation percentage and amylose content percentage in rice[J]. Journal of Cereal Science, 2020, 93: 102980. doi: 10.1016/j.jcs.2020.102980
|
[42] |
岳红亮, 赵庆勇, 赵春芳, 等. 江苏省半糯粳稻食味品质特征及其与感官评价的关系[J]. 中国粮油学报, 2020, 35(6): 7-14. doi: 10.3969/j.issn.1003-0174.2020.06.002
|
[43] |
QIU X, YANG J, ZHANG F, et al. Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study[J]. The Crop Journal, 2021, 9(6): 1470-1480. doi: 10.1016/j.cj.2020.12.010
|
[44] |
OKPALA N E, POTCHO M P, IMRAN M, et al. Starch morphology and metabolomic analyses reveal that the effect of high temperature on cooked rice elongation and expansion varied in indica and japonica rice cultivars[J]. Agronomy, 2021, 11(12): 2416. doi: 10.3390/agronomy11122416
|
[45] |
POTCHO P M, OKPALA N E, KOROHOU T, et al. Nitrogen sources affected the biosynthesis of 2-acetyl-1-pyrroline, cooked rice elongation and amylose content in rice[J]. PLoS One, 2021, 16(7): e254182.
|
[46] |
AB HALIM A A B, RAFII M Y, OSMAN M B, et al. Ageing effects, generation means, and path coefficient analyses on high kernel elongation in Mahsuri Mutan and Basmati 370 rice populations[J]. Biomed Research International, 2021, 2021: 8350136. doi: 10.1155/2021/8350136
|
[47] |
徐伟清, 王小雷, 刘杨, 等. 稻米蒸煮特性QTL定位及与感官食味品质的相关性分析[J]. 核农学报, 2022, 36(1): 66-74. doi: 10.11869/j.issn.100-8551.2022.01.0066
|
[48] |
刘宜柏, 黄英金. 稻米食味品质的相关性研究[J]. 江西农业大学学报, 1989, 11(4): 1-5. doi: 10.13836/j.jjau.1989050
|
[49] |
AHN S N, BOLLICH C N, MCCLUNG A M, et al. RFLP analysis of genomic regions associated with cooked-kernel elongation in rice[J]. Theoretical and Applied Genetics, 1993, 87(1/2): 27-32.
|
[50] |
SANTOS M V, CUEVAS R P O, SREENIVASULU N, et al. Measurement of rice grain dimensions and chalkiness, and rice grain elongation using image analysis[J]. Methods in Molecular Biology, 2019, 1892: 99-108.
|
[51] |
SCHNEIDER C A, RASBAND W S, ELICEIRI K W. NIH Image to ImageJ: 25 years of image analysis[J]. Nature methods, 2012, 9(7): 671-675. doi: 10.1038/nmeth.2089
|
[52] |
JINOROSE M, PRACHAYAWARAKORN S, SOPONRONNARIT S. A novel image-analysis based approach to evaluate some physicochemical and cooking properties of rice kernels[J]. Journal of Food Engineering, 2014, 124: 184-190.
|
[53] |
SUMAN K, MADHUBABU P, RATHOD R, et al. Variation of grain quality characters and marker-trait association in rice (Oryza sativa L.)[J]. Journal of Genetics, 2020, 99(1): 5. doi: 10.1007/s12041-019-1164-4
|
[54] |
黄发松, 孙宗修, 胡培松, 等. 食用稻米品质形成研究的现状与展望[J]. 中国水稻科学, 1998, 12(3): 172-176. doi: 10.3321/j.issn:1001-7216.1998.03.012
|
[55] |
JIANG Y, CHEN Y, ZHAO C, et al. The starch physicochemical properties between superior and inferior grains of japonica rice under panicle nitrogen fertilizer determine the difference in eating quality[J]. Foods, 2022, 11(16): 2489. doi: 10.3390/foods11162489
|
[56] |
TESTER R F, KARKALAS J, QI X. Starch-composition, fine structure and architecture[J]. Journal of Cereal Science, 2004, 39(2): 151-165. doi: 10.1016/j.jcs.2003.12.001
|
[57] |
RAIGOND P, EZEKIEL R, RAIGOND B. Resistant starch in food: A review[J]. Journal of the Science of Food and Agriculture, 2015, 95(10): 1968-1978. doi: 10.1002/jsfa.6966
|
[58] |
WEI C, QIN F, ZHOU W, et al. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating[J]. Food Chemistry, 2011, 128(3): 645-652. doi: 10.1016/j.foodchem.2011.03.080
|
[59] |
ZHOU H, WANG L, LIU G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12844-12849.
|
[60] |
PAN T, LIN L, ZHANG L, et al. Changes in kernel properties, in situ gelatinization, and physicochemical properties of waxy rice with inhibition of starch branching enzyme during cooking[J]. International Journal of Food Science and Technology, 2019, 54(9): 2780-2791. doi: 10.1111/ijfs.14193
|
[61] |
HE W, LIN L, WANG J, et al. Inhibition of starch branching enzymes in waxy rice increases the proportion of long branch-chains of amylopectin resulting in the comb-like profiles of starch granules[J]. Plant Science, 2018, 277: 177-187.
|
[62] |
SHI S, PAN K, ZHANG G, et al. Differences in grain protein content and regional distribution of 706 rice accessions[J]. Journal of the Science of Food and Agriculture, 2023, 103(3): 1593-1599. doi: 10.1002/jsfa.12308
|
[63] |
KUMAR P, PRAKASH K S, JAN K, et al. Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch[J]. Journal of Cereal Science, 2017, 77: 194-200. doi: 10.1016/j.jcs.2017.08.017
|
[64] |
CHAMPAGNE E T, BETT-GARBER K L, THOMSON J L, et al. Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture[J]. Cereal Chemistry Journal, 2009, 86(3): 274-280. doi: 10.1094/CCHEM-86-3-0274
|
[65] |
LYON B G, CHAMPAGNE E T, VINYARD B T, et al. Effects of degree of milling, drying condition, and final moisture content on sensory texture of cooked rice[J]. Cereal Chemistry, 1999, 76(1): 56-62. doi: 10.1094/CCHEM.1999.76.1.56
|
[66] |
SHI S, ZHANG G, CHEN L, et al. Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking[J]. Food Research International, 2023, 163: 112193. doi: 10.1016/j.foodres.2022.112193
|
[67] |
BALINDONG J L, WARD R M, LIU L, et al. Rice grain protein composition influences instrumental measures of rice cooking and eating quality[J]. Journal of Cereal Science, 2018, 79: 35-42. doi: 10.1016/j.jcs.2017.09.008
|
[68] |
习敏, 季雅岚, 文革, 等. 水稻食味品质形成影响因素研究与展望[J]. 中国农学通报, 2020, 36(12): 159-164.
|
[69] |
SHI S, ZHANG G, ZHAO D, et al. Changes in water absorption and morphology of rice with different eating quality during soaking[J]. European Food Research and Technology, 2023, 249(3): 759-766. doi: 10.1007/s00217-022-04173-x
|
[70] |
张栋昊, 蔡妍培, 劳菲, 等. 大米蛋白质与米饭食味品质关联性研究进展[J]. 食品科学, 2022, 44(9): 270-277.
|
[71] |
ZHAN Q, YE X, ZHANG Y, et al. Starch granule-associated proteins affect the physicochemical properties of rice starch[J]. Food Hydrocolloids, 2020, 101: 105504. doi: 10.1016/j.foodhyd.2019.105504.
|
[72] |
HU Z, YANG Y, LU L, et al. Kinetics of water absorption expansion of rice during soaking at different temperatures and correlation analysis upon the influential factors[J]. Food Chemistry, 2021, 346: 128912. doi: 10.1016/j.foodchem.2020.128912
|
[73] |
SHI J, WU M, QUAN M. Effects of protein oxidation on gelatinization characteristics during rice storage[J]. Journal of Cereal Science, 2017, 75: 228-233. doi: 10.1016/j.jcs.2017.04.013
|
[74] |
YANG W, XU P, ZHANG J, et al. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. doi: 10.1016/j.jgg.2022.02.002
|
[75] |
廖斌, 张桂莲. 水稻垩白的研究进展[J]. 作物研究, 2015, 29(1): 77-83. doi: 10.3969/j.issn.1001-5280.2015.01.20
|
[76] |
LI Y, FAN C, XING Y, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. doi: 10.1038/ng.2923
|
[77] |
SINGH N, SODHI N S, KAUR M, et al. Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels[J]. Food Chemistry, 2003, 82(3): 433-439. doi: 10.1016/S0308-8146(03)00007-4
|
[78] |
CHENG F M, ZHONG L J, WANG F, et al. Differences in cooking and eating properties between chalky and translucent parts in rice grains[J]. Food Chemistry, 2005, 90(1/2): 39-46.
|
[79] |
CHUN A, SONG J, KIM K, et al. Quality of head and chalky rice and deterioration of eating quality by chalky rice[J]. Journal of Crop Science and Biotechnology, 2009, 12(4): 239-244. doi: 10.1007/s12892-009-0142-4
|
[80] |
王忠, 顾蕴洁, 陈刚, 等. 稻米的品质和影响因素[J]. 分子植物育种, 2003, 1(2): 231-241. doi: 10.3969/j.issn.1672-416X.2003.02.011
|
[81] |
卢林, 孙成效, 朱智伟, 等. 我国稻米品质标准及检测技术创新概述[J]. 中国稻米, 2022, 28(1): 1-6.
|
[82] |
TONG C, GAO H, LUO S, et al. Impact of postharvest operations on rice grain quality: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(3): 626-640. doi: 10.1111/1541-4337.12439
|
[83] |
郭桂英, 王青林, 马汉云, 等. 碾磨品质对籼稻食味品质的影响[J]. 天津农业科学, 2017, 23(6): 40-44.
|
[84] |
KIM S Y, LEE H. Effects of eating quality on milled rice produced from brown rice with different milling conditions[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(5): 621-629. doi: 10.1007/s13765-013-3097-6
|
[85] |
MOHAPATRA D, BAL S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions[J]. Journal of Food Engineering, 2006, 73(3): 253-259. doi: 10.1016/j.jfoodeng.2005.01.028
|
[86] |
YANG X, BI J, GILBERT R G, et al. Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype[J]. Journal of Cereal Science, 2016, 71: 230-238. doi: 10.1016/j.jcs.2016.09.003
|
[87] |
JULIANO B O. Physico-chemical properties of starch and protein and their relation to grain quality and nutritional value of rice[J]. Rice Breeding, 1972, 5: 389-405.
|
[88] |
袁玉洁, 张丝琪, 王明玥, 等. 蒸煮米水比对不同直链淀粉含量杂交籼稻米粒微观结构和食味特性的影响[J]. 作物学报, 2022, 48(12): 3225-3233.
|
[89] |
李萍, 周广春, 崔晶, 等. 煮饭水质结合加水量和浸泡时间对粳稻食味的影响[J]. 中国稻米, 2021, 27(6): 74-79. doi: 10.3969/j.issn.1006-8082.2021.06.015
|
[90] |
HUSSIAN R A, BROWN D C. Use of two-dimensional grid patterns to limit hazardous ambulation in demented patients[J]. Journal of Gerontology, 1987, 42(5): 558-560. doi: 10.1093/geronj/42.5.558
|
[91] |
高振宇, 曾大力, 崔霞, 等. 水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析[J]. 中国科学(C辑: 生命科学), 2003, 33(6): 481-487.
|
[92] |
张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. doi: 10.16288/j.yczz.19-105
|
[93] |
ZHANG G. Target chromosome-segment substitution: A way to breeding by design in rice[J]. The Crop Journal, 2021, 9(3): 658-668. doi: 10.1016/j.cj.2021.03.001
|