Citation: | HUANG Fugang, CHENG Ling, HE Wenqiang, et al. Effects of water and nitrogen, phosphorus and potassium nutrition stress of rice seedlings on resistance of brown planthopper[J]. Journal of South China Agricultural University, 2024, 45(2): 247-255. DOI: 10.7671/j.issn.1001-411X.202301008 |
To provide theoretical basis for the comprehensive application of field water and fertilizer to control brown planthopper (BPH), we investigated the effect of water and food on the mortality rate of BPH, and rice seedlings treated with different nitrogen, phosphorus and potassium mass concentrations on the antixenosis and antibiosis of BPH.
The BPH mortality under water or food treatments (‘9311’ stem segments, ‘BPHR96’ stem segments, starvation stress with water or without water) was detected with susceptible rice line ‘9311’ and resistant line ‘BPHR96’. Rice seedlings were cultured with low/control/high nitrogen, phosphorus and potassium or low/control/high potassium concentrations nutrient solution in a greenhouse. Five seedling traits including tiller number, plant height, root length, aboveground fresh weight and root fresh weight and BPH survival number, BPH growth rate, honeydew excretion score and host selection number were detected.
The BPH mortality increased rapidly in the absence of food. All the BPH treated without food and water died at 48 h after infestation. The mortality was 96.8%, 85.0%, and 44.3% treated with water, ‘BPHR96’ or ‘9311’ stem segments, respectively at 216 h after infestation. Comparing with control or high concentration of nitrogen, phosphorus and potassium, low concentration restricted the growth of rice seedlings, but significantly reduced the survival number, weight gain, honeydew excretion and host selection number of BPH. The effect was more obvious for the resistant rice line. Furthermore, control and high concentration of potassium had no significant effect on the growth of BPH except for rice seedlings compared to low potassium.
Water is the primary factor for BPH survival, followed by the palatability of food. Low concentration of nitrogen, phosphorus and potassium treatment can reduce BPH damage to rice seedlings, while high concentration of nitrogen, phosphorus and potassium is beneficial to the invasion of BPH. Therefore, water and fertilizer managements can be applied to the comprehensive control of BPH in the process of rice production.
[1] |
HUANG S, WANG P T, YAMAJI N, et al. Plant nutrition for human nutrition: Hints from rice research and future perspectives[J]. Molecular Plant, 2020, 13(6): 825-835. doi: 10.1016/j.molp.2020.05.007
|
[2] |
TRIPATHI R, TEWARI R, SINGH K P, et al. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection[J]. Frontiers in Plant Science, 2022, 13: 883970. doi: 10.3389/fpls.2022.883970.
|
[3] |
JEEVANANDHAM N, RAMAN R, RAMAIAH D, et al. Rice: Nilaparvata lugens Stal interaction: Current status and future prospects of brown planthopper management[J]. Journal of Plant Diseases and Protection, 2023, 130(1): 125-141. doi: 10.1007/s41348-022-00672-x
|
[4] |
HORGAN F G, DE FREITAS T F S, CRISOL- MARTÍNEZ E, et al. Nitrogenous fertilizer reduces resistance but enhances tolerance to the brown planthopper in fast-growing, moderately resistant rice[J]. Insects, 2021, 12(11): 989. doi: 10.3390/insects12110989.
|
[5] |
刘井兰, 吴进才. 褐飞虱侵害对不同抗性水平水稻根部吸收氮、磷、钾的影响[J]. 昆虫学报, 2010, 53(4): 411-419.
|
[6] |
刘井兰, 于建飞, 吴进才, 等. 褐飞虱侵害后不同水稻品种根及地上部氮、磷、钾含量的变化[J]. 昆虫学报, 2007, 50(10): 1034-1041.
|
[7] |
RASHID M M, JAHAN M, ISLAM K S. Impact of nitrogen, phosphorus and potassium on brown planthopper and tolerance of its host rice plants[J]. Rice Science, 2016, 23(3): 119-131. doi: 10.1016/j.rsci.2016.04.001
|
[8] |
GUPTA R, LEIBMAN-MARKUS M, ANAND G, et al. Nutrient elements promote disease resistance in tomato by differentially activating immune pathways[J]. Phytopathology, 2022, 112(11): 2360-2371. doi: 10.1094/PHYTO-02-22-0052-R
|
[9] |
BALLINI E, NGUYEN T T, MOREL J B. Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat[J]. Rice, 2013, 6(1): 32. doi: 10.1186/1939-8433-6-32.
|
[10] |
张晓燕. 施钾对苜蓿营养、次生代谢物质及抗蓟马的影响[D]. 兰州: 甘肃农业大学, 2017.
|
[11] |
WU X Y, YU Y G, BAERSON S R, et al. Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens[J]. Frontiers in Plant Science, 2017, 8: 28. doi: 10.3389/fpls.2017.00028.
|
[12] |
HE W Q, YANG M, LI Z H, et al. High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper[J]. Crop Protection, 2015, 67: 20-25. doi: 10.1016/j.cropro.2014.09.013
|
[13] |
YANG M, HE W Q, LI Y, et al. Effects of low levels of nitrogen or phosphorus provided in hydroponic culture on brown planthopper feeding and survival[J]. International Journal of Pest Management, 2021, 67(2): 89-98. doi: 10.1080/09670874.2019.1682210
|
[14] |
LIN Y B, LIN X H, DING C H, et al. Priming of rice defense against a sap-sucking insect pest brown planthopper by silicon[J]. Journal of Pest Science, 2022, 95(3): 1371-1385. doi: 10.1007/s10340-021-01462-4
|
[15] |
陈英之, 韦燕萍, 李孝琼, 等. 稻褐飞虱新抗源的鉴定和利用[J]. 西南农业学报, 2009, 22(6): 1581-1588.
|
[16] |
QIU Y F, GUO J P, JING S L, et al. High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds[J]. Theoretical and Applied Genetics, 2010, 121(8): 1601-1611. doi: 10.1007/s00122-010-1413-7
|
[17] |
邓钊, 石少阶, 王卉颖, 等. 籼稻资源WD15515中抗褐飞虱QTL的定位研究[J]. 作物学报, 2016, 42(3): 353-360.
|
[18] |
BAQUI M A, KERSHAW W J S. Effect of plant water stress on honeydew production, weight gain and oviposition of brown planthopper Nilaparvata lugens on rice cultivars[J]. Entomologia Experimentalis et Applicata, 1993, 67(1): 25-30. doi: 10.1111/j.1570-7458.1993.tb01647.x
|
[19] |
于莹, 徐红星, 郑许松, 等. 在高温下干旱胁迫对褐飞虱生态适应性的影响[J]. 植物保护学报, 2013, 40(3): 193-199.
|
[20] |
谭椰, 徐文彦, 周文武, 等. 水分胁迫下水稻对褐飞虱转录组的影响[J]. 植物保护学报, 2017, 44(6): 973-981.
|
[21] |
李超, 刘洋, 陈恺林, 等. 灌溉方式对优质晚稻褐飞虱及其主要天敌种群动态的影响[J]. 中国生态农业学报, 2016, 24(10): 1391-1400.
|
[22] |
郑世燕, 丁伟, 杜根平, 等. 增施矿质营养对烟草青枯病的控病效果及其作用机理[J]. 中国农业科学, 2014, 47(6): 1099-1110.
|
[23] |
NAJIHAH N I, HANAFI M M, IDRIS A S, et al. Silicon treatment in oil palms confers resistance to basal stem rot disease caused by Ganoderma boninense[J]. Crop Protection, 2015, 67: 151-159. doi: 10.1016/j.cropro.2014.10.004
|
[24] |
郑许松, 陈桂华, 徐红星, 等. 温度和氮肥对褐飞虱存活、生长发育和繁殖的交互作用[J]. 应用生态学报, 2009, 20(5): 1171-1175.
|
[25] |
REUVENI R, DOR G, RAVIV M, et al. Systemic resistance against Sphaerotheca fuliginea in cucumber plants exposed to phosphate in hydroponics system, and its control by foliar spray of mono-potassium phosphate[J]. Crop Protection, 2000, 19(5): 355-361. doi: 10.1016/S0261-2194(00)00029-6
|
[26] |
CAMPOS-SORIANO L, BUNDÓ M, BACH-PAGES M, et al. Phosphate excess increases susceptibility to pathogen infection in rice[J]. Molecular Plant Pathology, 2020, 21(4): 555-570. doi: 10.1111/mpp.12916
|
[27] |
左丽娟, 赵正雄, 杨焕文, 等. 增加施钾量对红花大金元烤烟部分生理生化参数及“两黑病”发生的影响[J]. 作物学报, 2010, 36(5): 856-862.
|
[28] |
李刘杰, 汪强, 韩燕来, 等. 钾水平对小麦酚类物质、木质素代谢和接种蚜虫群体动态的影响[J]. 中国农学通报, 2009, 25(17): 143-148.
|
[29] |
MIYASAKA S C, HANSEN J D, MCDONALD T G, et al. Effects of nitrogen and potassium in kikuyu grass on feeding by yellow sugarcane aphid[J]. Crop Protection, 2007, 26(4): 511-517. doi: 10.1016/j.cropro.2006.04.023
|
1. |
廖娟,曹佳雯,田泽丰,刘晓丽,杨玉青,邹禹,王玉伟,朱德泉. 基于近红外光谱的稻种秕谷含量等级快速判别. 光谱学与光谱分析. 2025(03): 692-699 .
![]() | |
2. |
罗永泽,张广泽,林木宋,刘骏,刘旭,欧阳咏霁,徐振江,刘洪. 基于OpenCV图像处理的水稻谷粒考种软件的设计. 电脑知识与技术. 2023(35): 23-26 .
![]() |