• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Yifan, LI Fusheng, LUO Weigang, et al. Effects of ridge irrigation and nitrogen reduction on paddy field CH4 emission, soil organic acid content and expression of enzyme encoding genes[J]. Journal of South China Agricultural University, 2024, 45(1): 42-51. DOI: 10.7671/j.issn.1001-411X.202301001
Citation: LI Yifan, LI Fusheng, LUO Weigang, et al. Effects of ridge irrigation and nitrogen reduction on paddy field CH4 emission, soil organic acid content and expression of enzyme encoding genes[J]. Journal of South China Agricultural University, 2024, 45(1): 42-51. DOI: 10.7671/j.issn.1001-411X.202301001

Effects of ridge irrigation and nitrogen reduction on paddy field CH4 emission, soil organic acid content and expression of enzyme encoding genes

More Information
  • Received Date: December 31, 2022
  • Available Online: December 06, 2023
  • Published Date: November 16, 2023
  • Objective 

    To investigate the effects of ridge irrigation with different ridge widths and reduced nitrogen fertilizer at different growth stages on methane (CH4) emissions, soil organic acid content and expression of enzyme encoding genes related to CH4 formation and transformation (including methyl coenzyme M reductase gene mcrA in methanogenic archaea, and methane monooxygenase gene sMMO in methane oxidizing bacteria) in paddy fields, and reveal the effects of soil organic acid content and the expression of mcrA, sMMO on CH4 fluxes in paddy fields.

    Method 

    A field experiment was conducted with three irrigation modes (flooding irrigation, ridge irrigation with ridge widths of 80, 100 cm) and three nitrogen treatments (conventional nitrogen application: 135 kg·hm−2, including seedling fertilizer 47.25 kg hm−2, tillering fertilizer 54.00 kg hm−2 and booting fertilizer 33.75 kg hm−2; Nitrogen reduction at seedling stage: 110 kg·hm−2, including seedling fertilizer 22.25 kg hm−2, tillering fertilizer 54.00 kg hm−2 and booting fertilizer 33.75 kg hm−2; Nitrogen reduction at booting stage: 110 kg·hm−2 , including seedling fertilizer 47.25 kg hm−2, tillering fertilizer 54.00 kg hm−2 and booting fertilizer 8.75 kg hm−2). The paddy field CH4 fluxes, soil organic acid content and mcrA, sMMO expression levels in different treatments were measured, and the relationships among them were analyzed.

    Result 

    Under the same nitrogen treatment, ridge irrigation significantly reduced CH4 emission from paddy fields compared with flooding irrigation. Under the same irrigation mode, nitrogen reduction at seedling stage significantly reduced CH4 emission from paddy field compared with conventional nitrogen application. The total organic acid content of soil in ridge irrigation with ridge width of 80 cm + nitrogen reduction at seedling stage treatment was 71.7% higher than that before fertilization on the 10th day after fertilization, and 28.8% higher in flooding irrigation + conventional nitrogen application treatment. Under the condition of nitrogen reduction at seedling stage, the expression of mcrA in ridge irrigation with ridge width of 80 cm soil was overall lower than that in flooding irrigation soil, and the expression of sMMO was higher than that in flooding irrigation except 25 days after transplanting. CH4 fluxes were significantly correlated with mcrA expression and total organic acid content in soils (P<0.01), with correlation coefficients of 0.644 and −0.348, respectively. There were significant correlations between soil total organic acid content and the expressions of mcrA and sMMO (P < 0.05), with correlation coefficients of −0.240 and 0.197, respectively.

    Conclusion 

    The ridge irrigation with the ridge width of 80 cm + nitrogen reduction at seedling stage treatment can reduce CH4 flux from paddy fields. Soil total organic acid content and mcrA expression significantly affect paddy field CH4 flux, while soil sMMO expression may indirectly affect CH4 flux.

  • [1]
    IPCC. Climate change 2014: Synthesis report[R]//PACHAURI R K, MEYER L A. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland, 2014: 87.
    [2]
    SMITH P, MARTINO D, CAI Z, et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture[J]. Agriculture Ecosystems and Environment, 2007, 118(1/2/3/4): 6-28.
    [3]
    刘英烈. 不同氮肥水平集约化栽培模式双季稻生态系统温室气体收支的田间观测[D]. 南京: 南京农业大学, 2016.
    [4]
    张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响[J]. 中国农业科学, 2011, 44(24): 4988-4998. doi: 10.3864/j.issn.0578-1752.2011.24.003
    [5]
    马微微, 陈灿, 黄璜, 等. 垄作稻鱼鸡共生对稻田土壤养分含量及水稻产量的影响[J]. 河南农业科学, 2021, 50(8): 9-17.
    [6]
    ZENG Y, LI F S. Ridge irrigation reduced greenhouse gas emission in double-cropping rice field[J]. Archives of Agronomy and Soil Science, 2021, 67(8): 1003-1016. doi: 10.1080/03650340.2020.1771698
    [7]
    曹开勋, 赵坤, 金王飞飞, 等. 水氮互作对稻田温室气体排放的影响[J]. 土壤学报, 2022, 59(5): 1386-1396.
    [8]
    胡敏杰, 仝川, 邹芳芳. 氮输入对土壤甲烷产生、氧化和传输过程的影响及其机制[J]. 草业学报, 2015, 24(6): 204-212. doi: 10.11686/cyxb2014313
    [9]
    姜珊珊. 氮肥减量及不同品种肥料配施对稻麦农田CH4和N2O(直接和间接)排放的影响[D]. 南京: 南京农业大学, 2017.
    [10]
    BODELIER P L, ROSLEV P, HENCKEL T, et al. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature, 2000, 403(6768): 421-424. doi: 10.1038/35000193
    [11]
    江瑜, 朱相成, 钱浩宇, 等. 水稻丰产与稻田甲烷减排协同的研究展望[J]. 南京农业大学学报, 2022, 45(5): 839-847.
    [12]
    董艳, 杨智仙, 董坤, 等. 供氮水平对小麦生长特性及根系分泌有机酸的影响[C]//中国土壤学会. 面向未来的土壤科学(上册): 中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集. 成都: 电子科技大学出版社, 2012: 481-485.
    [13]
    蒋娜, 陈紫娟, 曹轶, 等. 低温湿地甲烷古菌及其介导的甲烷产生途径[J]. 微生物学通报, 2013, 40(1): 137-145.
    [14]
    余锋, 李思宇, 邱园园, 等. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响[J]. 中国水稻科学, 2022, 36(1): 1-12.
    [15]
    AWASTHI M K, WAINAINA S, MAHBOUBI A, et al. Methanogen and nitrifying genes dynamics in immersed membrane bioreactors during anaerobic co-digestion of different organic loading rates food waste[J]. Bioresource Technology, 2021, 342: 125920. doi: 10.1016/j.biortech.2021.125920.
    [16]
    JODTS R J, ROSS M O, KOO C W, et al. Coordination of the copper centers in particulate methane monooxygenase: Comparison between methanotrophs and characterization of the CuC site by EPR and ENDOR spectroscopies[J]. Journal of the American Chemical Society, 2021, 143(37): 15358-15368. doi: 10.1021/jacs.1c07018
    [17]
    YUAN J, YUAN Y, ZHU Y, et al. Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil[J]. Science of the Total Environment, 2018, 627: 770-781. doi: 10.1016/j.scitotenv.2018.01.233
    [18]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [19]
    QIAN L, CHEN L, JOSEPH S, et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China[J]. Carbon Management, 2014, 5(2): 145-154. doi: 10.1080/17583004.2014.912866
    [20]
    TAN S D, CHEN B, ZHENG H B, et al. Effects of cultivation techniques on CH4 emissions, net ecosystem production, and rice yield in a paddy ecosystem[J]. Atmospheric Pollution Research, 2018, 10(1): 274-282.
    [21]
    马艳婷, 赵志远, 冯天宇, 等. 有机肥配施对苹果园温室气体排放的影响[J]. 农业环境科学学报, 2021, 40(9): 2039-2048.
    [22]
    SCHERER R, RYBKA A C P, BALLUS C A, et al. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices[J]. Food Chemistry, 2012, 135(1): 150-154. doi: 10.1016/j.foodchem.2012.03.111
    [23]
    马倩倩, 吴翠云, 蒲小秋, 等. 高效液相色谱法同时测定枣果实中的有机酸和VC含量[J]. 食品科学, 2016, 37(14): 149-153. doi: 10.7506/spkx1002-6630-201614026
    [24]
    HAN J I, SEMRAU J D. Quantification of gene expression in methanotrophs by competitive reverse transcription-polymerase chain reaction[J]. Environmental Microbiology, 2004, 6(4): 388-399. doi: 10.1111/j.1462-2920.2004.00572.x
    [25]
    ZHU Y, LI Y, ZHENG N, et al. Similar but not identical resuscitation trajectories of the soil microbial community based on either DNA or RNA after flooding[J]. Agronomy, 2020, 10(4): 502. doi: 10.3390/agronomy10040502.
    [26]
    HENRY A, DOUCETTE W, NORTON J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3): 904-912. doi: 10.2134/jeq2006.0425sc
    [27]
    徐国伟, 孙会忠, 陆大克, 等. 不同水氮条件下水稻根系超微结构及根系活力差异[J]. 植物营养与肥料学报, 2017, 23(3): 811-820.
    [28]
    戢林, 李廷轩, 张锡洲, 等. 水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征[J]. 植物营养与肥料学报, 2012, 18(5): 1046-1055.
    [29]
    王钧美, 张莉, 徐桃元, 等. 不同灌溉稻田产甲烷菌与甲烷产生率的变化规律[J]. 灌溉排水学报, 2014, 33(Z1): 360-363.
    [30]
    王智平, 胡春胜, 杨居荣. 无机氮对土壤甲烷氧化作用的影响[J]. 应用生态学报, 2003(2): 305-309. doi: 10.3321/j.issn:1001-9332.2003.02.033
    [31]
    熊浩, 张保成, 李建柱, 等. 灌水量对冬小麦农田土壤N2O与CO2排放的影响[J]. 灌溉排水学报, 2020, 39(9): 41-50.
    [32]
    马艳芹, 钱晨晨, 孙丹平, 等. 施氮水平对稻田土壤温室气体排放的影响[J]. 农业工程学报, 2016, 32(S2): 128-134.
    [33]
    范玉婧, 姚惠娇, 高志岭, 等. 氮源对甲烷氧化混合菌群甲烷氧化和氧化亚氮排放的影响[J]. 河北农业大学学报, 2021, 44(3): 54-61.
    [34]
    丁维新, 蔡祖聪. 温度对甲烷产生和氧化的影响[J]. 应用生态学报, 2003(4): 604-608.
    [35]
    SINGH A, SINGH R S, UPADHYAY S N, et al. Community structure of methanogenic archaea and methane production associated with compost-treated tropical rice-field soil[J]. FEMS Microbiology Ecology, 2012, 82(1): 118-134. doi: 10.1111/j.1574-6941.2012.01411.x
    [36]
    LIU P, KLOSE M, CONRAD R. Temperature effects on structure and function of the methanogenic microbial communities in two paddy soils and one desert soil[J]. Soil Biology and Biochemistry, 2018, 124: 236-244. doi: 10.1016/j.soilbio.2018.06.024
  • Cited by

    Periodical cited type(11)

    1. 陆洁,彭远航,朱洁怡,龙凤玲,阮可瑾,郑峰霖,刘颂颂,曾曙才. 银叶树对Pb、Cd、Cu污染模拟湿地的适应性和修复潜力. 福建农林大学学报(自然科学版). 2024(02): 276-283 .
    2. 张西良,高涵,张家祺,徐云峰,陈成,陆海燕. 面向栽培基质的二氧化钛电极EGFET pH传感器设计. 排灌机械工程学报. 2024(07): 743-748 .
    3. 刘婷,刘颂颂,潘丽婵,苏纯兰,翟欣,黄小清,李洁红. 华南地区湿生乡土植物资源及其区系特征分析. 热带林业. 2024(02): 4-8 .
    4. 潘隆应. 种子不同处理方法和育苗基质对铁冬青育苗效果的影响. 林业勘察设计. 2024(02): 19-21 .
    5. 肖兵,黄家梦,陆晓民. 葡萄糖醛酸产生菌Pseudomonas sp.LP20对水稻镉吸收的影响. 安徽科技学院学报. 2023(01): 31-36 .
    6. 杨海君,郭佳源,谭菊,谭璐,朱姝,吴亮,张皓,牛鸿宇,王凡. 镉胁迫对2种酸性土壤地肤生长及其修复镉能力的影响. 中国环境科学. 2023(05): 2423-2433 .
    7. 董晓全,王雨滢,何利梅,曾曙才,吴道铭. 施用污泥对鹅掌藤根系生长和重金属吸收的影响. 华南农业大学学报. 2023(04): 513-522 . 本站查看
    8. 卢圣凡,尹世杰,王超,鞠龙泰,李佳. 镉胁迫对忍冬根系形态与根系分泌物的影响. 山东农业科学. 2023(08): 96-100 .
    9. 叶维忠. 铁冬青引种试种初探. 福建热作科技. 2023(03): 12-15 .
    10. 陈宇熙,余有祥,扈嘉鑫,郑炳松,闫道良. 药用植物铁冬青研究进展. 南方林业科学. 2023(06): 44-50 .
    11. 张光贵. 外源钙对高温期铁冬青幼苗生理特性的影响. 绿色科技. 2022(19): 76-79 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return