JIANG Lai, WANG Yingchao, HUO Xiaojing, et al. Temperature detection method of caged white feather broilers based on infrared image[J]. Journal of South China Agricultural University, 2024, 45(2): 304-310. DOI: 10.7671/j.issn.1001-411X.202212024
    Citation: JIANG Lai, WANG Yingchao, HUO Xiaojing, et al. Temperature detection method of caged white feather broilers based on infrared image[J]. Journal of South China Agricultural University, 2024, 45(2): 304-310. DOI: 10.7671/j.issn.1001-411X.202212024

    Temperature detection method of caged white feather broilers based on infrared image

    More Information
    • Received Date: December 21, 2022
    • Available Online: January 02, 2024
    • Published Date: April 20, 2023
    • Objective 

      To address the challenge of automatic temperature detection for large-scale caged broilers, a method combining deep learning and regression analysis was proposed.

      Method 

      An infrared thermal imager was used to capture infrared images of broiler chickens, the YOLOv5s deep learning algorithm was used to train the model for the region of interest (broiler chicken head). Multiple linear regression and multiple nonlinear regression were respectively introduced to establish prediction models between the temperature of the broiler’s region of interest and the temperature under its wings, ultimately achieving the goal of automatic body temperature detection.

      Result 

      The test results showed that the precision and recall of the region of interest model based on deep learning were 93.8% and 95.8% respectively. The average relative errors of the multiple linear regression 1 and multiple nonlinear regression temperature prediction models were 0.28% and 0.27% respectively, and the maximum differences between the predicted and actual temperature values were 0.34 and 0.32 ℃ respectively.

      Conclusion 

      The nonlinear model has a higher accuracy rate in predicting the body temperature of broilers, providing technical support and a preliminary research basis for automated in-house temperature inspection equipment for chicken farming.

    • [1]
      张瑞娟. 中国肉鸡产业发展现状及趋势[J]. 江苏农业科学, 2016, 44(1): 448-451.
      [2]
      马苏芬. 肉鸡规模化养殖疾病流行特点与防控[J]. 畜牧兽医科学, 2020(8): 46-47.
      [3]
      谢秋菊, 刘学飞, 郑萍, 等. 畜禽体温自动监测技术及应用研究进展[J]. 农业工程学报, 2022, 38(15): 212-225.
      [4]
      姬莉莉, 胡伟龙, 石永宏, 等. 基于无线传感网络的哨兵鸡体温监测系统设计[J]. 畜牧与兽医, 2022, 54(11): 44-50.
      [5]
      胡家骏. 红外非接触测温系统设计与实现[D]. 哈尔滨: 黑龙江大学, 2016.
      [6]
      杨威. 蛋鸡穿戴式无线体温感知设备的开发及体温监测实验研究[D]. 杭州: 浙江大学, 2017.
      [7]
      李丽华. 蛋鸡体温与生产性能参数动态监测关键技术研究及应用[D]. 保定: 河北农业大学, 2014.
      [8]
      尹祥宇, 王艳君, 白杰, 等. 基于Tsic506和Zigbee的蛋鸡体温无线监测系统设计[J]. 中国农机化学报, 2014, 35(2): 281-285.
      [9]
      ZHANG X D, KANG X, FENG N N, et al. Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector[J]. Computers and Electronics in Agriculture, 2020, 178: 105754. doi: 10.1016/j.compag.2020.105754
      [10]
      刘国强. 基于红外图像奶牛发情信息监测装置的研究[D]. 呼和浩特: 内蒙古农业大学, 2021.
      [11]
      李沛. 红外热成像下家禽体温监测、预测方法与装置研究[D]. 太原: 中北大学, 2022.
      [12]
      贾桂锋, 蒙俊宇, 武墩, 等. 被毛对热成像检测生猪体表温度精度的影响及噪声滤除方法[J]. 农业工程学报, 2019, 35(4): 162-167.
      [13]
      赵海涛. 基于红外热成像技术的猪体温检测与关键测温部位识别[D]. 武汉: 华中农业大学, 2019.
      [14]
      COOK N J, CHABOT B, LUI T, et al. Infrared thermography detects febrile and behavioural responses to vaccination of weaned piglets.[J]. Animal: An International Journal of Animal Bioscience, 2015, 9(2): 339-346. doi: 10.1017/S1751731114002481
      [15]
      周丽萍, 陈志, 陈达, 等. 基于改进Otsu算法的生猪热红外图像耳根特征区域检测[J]. 农业机械学报, 2016, 47(4): 228-232.
      [16]
      陆辉山, 刘修林, 刘烨虹, 等. 蛋鸡体表温度与翼下温度的关系模型研究[J]. 中国家禽, 2018, 40(1): 56-58.
      [17]
      李沛, 陆辉山, 赵守耀, 等. 基于红外热成像的育成期蛋鸡体温检测方法[J]. 中国农业大学学报, 2021, 26(5): 186-193. doi: 10.11841/j.issn.1007-4333.2021.05.18
      [18]
      沈明霞, 陆鹏宇, 刘龙申, 等. 基于红外热成像的白羽肉鸡体温检测方法[J]. 农业机械学报, 2019, 50(10): 222-229. doi: 10.6041/j.issn.1000-1298.2019.10.025
      [19]
      BLOCH V, BARCHILON N, HALACHMI I, et al. Automatic broiler temperature measuring by thermal camera[J]. Biosystems Engineering, 2020, 199: 127-134. doi: 10.1016/j.biosystemseng.2019.08.011
      [20]
      胡根生, 吴继甜, 鲍文霞, 等. 基于改进YOLOv5网络的复杂背景图像中茶尺蠖检测[J]. 农业工程学报, 2021, 37(21): 191-198. doi: 10.11975/j.issn.1002-6819.2021.21.022
      [21]
      张志远, 罗铭毅, 郭树欣, 等. 基于改进YOLO v5的自然环境下樱桃果实识别方法[J]. 农业机械学报, 2022, 53(S1): 232-240.
      [22]
      YAN B, FAN P, LEI X, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote Sensing, 2021, 13(9): 1619. doi: 10.3390/rs13091619
      [23]
      宋小园, 朱仲元, 刘艳伟, 等. 通径分析在SPSS逐步线性回归中的实现[J]. 干旱区研究, 2016, 33(1): 108-113.
      [24]
      顾刘金. 应用SPSS软件实现多重线性回归分析[J]. 预防医学, 2018, 30(3): 323-324. doi: 10.3969/j.issn.1007-0931.2018.03.032

    Catalog

      Article views (199) PDF downloads (50) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return