Citation: | WANG Yu, CHEN Wanqiong, ZENG Shan, et al. Design of berry compliant clamping mechanism with variable stiffness based on gradient lattice structure[J]. Journal of South China Agricultural University, 2024, 45(2): 273-279. DOI: 10.7671/j.issn.1001-411X.202212021 |
According to the clamping performance requirements of berries in picking, sorting and other links, to apply the berry clamping mechanism simultaneously driven with high stiffness and clamped nondestructively with low stiffness at the end of the robot, and effectively promote the application of agricultural robot in the field of berry production.
Taking small tomato clamping mechanism as an example, a design method of berry compliant clamping mechanism with variable stiffness was proposed based on gradient lattice structure by introducing the theory of multi-level topology optimization. And an optimization model of this method was developed, which realized the design of an integrated compliant clamping mechanism that constructed from single material and had gradient distribution of stiffness.
A prototype of compliant clamping mechanism weighing about 45 g was fabricated by Polyjet additive manufacturing technology. The results of performance test of clamping Maoming ‘Millennium’ small tomatoes showed that when the driving load at the input end of the sample of the clamping mechanism was 11.00−14.56 N, the compression ratio of the small tomato was 0.90%−1.91%, and the mechanical damage degree was 0.
The optimized compliant clamping mechanism with variable stiffness can effectively grip the fragile berries nearly nondestructively, and provide a feasible method for the design of automatic clamping equipment for berry picking and sorting.
[1] |
王业成, 袁威, 陈海涛, 等. 便携式小浆果采收器[J]. 农业机械学报, 2011, 42(S1): 181-183.
|
[2] |
JUN J, KIM J, SEOL J, et al. Towards an efficient tomato harvesting robot: 3D perception, manipulation, and end-effector[J]. IEEE Access, 2021, 9: 17631-17640. doi: 10.1109/ACCESS.2021.3052240
|
[3] |
LYTRIDIS C, KABURLASOS V G, PACHIDIS T, et al. An overview of cooperative robotics in agriculture[J]. Agronomy, 2021, 11(9): 1818. doi: 10.3390/agronomy11091818.
|
[4] |
苗玉彬, 郑家丰. 苹果采摘机器人末端执行器恒力柔顺机构研制[J]. 农业工程学报, 2019, 35(10): 19-25.
|
[5] |
马涛, 杨冬, 赵海文, 等. 一种新型欠驱动机械手爪的抓取分析和优化设计[J]. 机器人, 2020, 42(3): 354-364. doi: 10.13973/j.cnki.robot.190412
|
[6] |
李健, 戴楚彦, 王扬威, 等. 面向草莓抓取的气动四叶片软体抓手研制[J]. 哈尔滨工业大学学报, 2022, 54(1): 105-113.
|
[7] |
HOHIMER C J, WANG H, BHUSAL S, et al. Design and field evaluation of a robotic apple harvesting system with a 3D-printed soft-robotic end-effector[J]. Transactions of the ASABE, 2019, 62(2): 405-414. doi: 10.13031/trans.12986
|
[8] |
贾江鸣, 叶玉泽, 程培林, 等. 细长果蔬采摘软体气动抓手设计与参数优化[J]. 农业机械学报, 2021, 52(6): 26-34. doi: 10.6041/j.issn.1000-1298.2021.06.003
|
[9] |
彭艳, 刘勇敢, 杨扬, 等. 软体机械手爪在果蔬采摘中的应用研究进展[J]. 农业工程学报, 2018, 34(9): 11-20.
|
[10] |
李铁风, 李国瑞, 梁艺鸣, 等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. doi: 10.6052/0459-1879-16-159
|
[11] |
BOGUE R. Flexible and soft robotic grippers: The key to new markets?[J]. Industrial Robot, 2016, 43(3): 258-263. doi: 10.1108/IR-01-2016-0027
|
[12] |
DONG H X, ASADI E, QIU C, et al. Geometric design optimization of an under-actuated tendon-driven robotic gripper[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 80-89. doi: 10.1016/j.rcim.2017.09.012
|
[13] |
POLYGERINOS P, WANG Z, OVERVELDE J T B, et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31(3): 778-789. doi: 10.1109/TRO.2015.2428504
|
[14] |
朱银龙, 赵虎, 苏海军, 等. 四指软体机械手机械特性分析与抓取试验[J]. 农业机械学报, 2022, 53(9): 434-442.
|
[15] |
SIGMUND O. On the design of compliant mechanisms using topology optimization[J]. Mechanics of Structures and Machines, 1997, 25(4): 493-524. doi: 10.1080/08905459708945415
|
[16] |
PEDERSEN C B W, BUHL T, SIGMUND O. Topology synthesis of large-displacement compliant mechanisms[J]. International Journal for Numerical Methods in Engineering, 2001, 50(12): 2683-2705. doi: 10.1002/nme.148
|
[17] |
张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128.
|
[18] |
吴陈铭, 戴澄恺, 王昌凌, 等. 多自由度3D打印技术研究进展综述[J]. 计算机学报, 2019, 42(9): 1918-1938.
|
[19] |
TELEGENOV K, TLEGENOV Y, SHINTEMIROV A. A low-cost open-source 3D-printed three-finger gripper platform for research and educational purposes[J]. IEEE Access, 2015, 3: 638-647. doi: 10.1109/ACCESS.2015.2433937
|
[20] |
YAMANO M, GOTO D, UJIIE K, et al. Experiments of a variable stiffness robot using shape memory gel[C]//IEEE/SICE International Symposium on System Integration. IEEE, 2013: 647-652.
|
[21] |
WANG B, TIAN K, ZHOU C H, et al. Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity[J]. Aerospace Science and Technology, 2017, 62: 114-121. doi: 10.1016/j.ast.2016.12.002
|
[22] |
王昱, 牟剑, 曾志雄, 等. 猪舍废气净化系统填料结构多目标拓扑优化设计与试验[J]. 农业机械学报, 2021, 52(7): 329-334. doi: 10.6041/j.issn.1000-1298.2021.07.035
|
[23] |
WANG Y, HU D Z, WANG H L, et al. Practical design optimization of cellular structures for additive manufacturing[J]. Engineering Optimization, 2019, 52(11): 1887-1902.
|
[24] |
王博, 周子童, 周演, 等. 薄壁结构多层级并发加筋拓扑优化研究[J]. 计算力学学报, 2021, 38(4): 487-497.
|
[25] |
WU J, SIGMUND O, GROEN J P. Topology optimization of multi-scale structures: A review[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1455-1480. doi: 10.1007/s00158-021-02881-8
|
[26] |
姜凯, 陈立平, 张骞, 等. 蔬菜嫁接机器人柔性夹持搬运机构设计与试验[J]. 农业机械学报, 2020, 51(S2): 63-71.
|
[27] |
IDAH P A, AJISEGIRI E S A, YISA M G. An assessment of impact damage to fresh tomato fruits[J]. AU Journal of Technology, 2007, 10(4): 271-275.
|
[28] |
李智国, 刘继展, 李萍萍. 机器人采摘中番茄力学特性与机械损伤的关系[J]. 农业工程学报, 2010, 26(5): 112-116.
|
[29] |
VAN LINDEN V, SCHEERLINCK N, DESMET M, et al. Factors that affect tomato bruise development as a result of mechanical impact[J]. Postharvest Biology and Technology, 2006, 42(3): 260-270. doi: 10.1016/j.postharvbio.2006.07.001
|
[30] |
RAHMATALLA S, SWAN C C. Sparse monolithic compliant mechanisms using continuum structural topology optimization[J]. International Journal for Numerical Methods in Engineering, 2005, 62(12): 1579-1605. doi: 10.1002/nme.1224
|
[31] |
WANG Y, LUO Z, ZHANG N. Topological optimization of structures using a multilevel nodal density-based approximant[J]. Computer Modeling in Engineering & Sciences, 2012, 84(3): 229-252.
|
[32] |
WANG Y, LUO Z, WU J L, et al. Topology optimization of compliant mechanisms using element-free Galerkin method[J]. Advances in Engineering Software, 2015, 85: 31-72.
|
[33] |
ANANTHASURESH G K, KOTA S, GIANCHANDANI Y. A methodical approach to the design of compliant micromechanisms[C]//Solid-State, Actuators, and Microsystems Workshop. Hilton Head Island, SC, 1994: 189-192.
|
[34] |
SIGMUND O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2001, 21: 120-127. doi: 10.1007/s001580050176
|