Citation: | SUI Chengrong, LI Qiqi, PAN Linghui, et al. Effects of fasting on intestinal barrier and sensory vagus receptor expression in yellow-feathered broilers[J]. Journal of South China Agricultural University, 2024, 45(2): 172-178. DOI: 10.7671/j.issn.1001-411X.202211048 |
The aim of this study was to investigate the changes of intestinal inflammatory signals and vagal nerve related receptors in yellow-feathered broilers under starvation.
Yellow-feathered broilers were used in the experiment. They were randomly divided into control group and fasting group according to the principle of consistent body weight. The expressions of appetite peptides, intestinal tight junction proteins and inflammatory factors in hypothalamus and receptors related to inflammation and appetite regulation in nodose ganglia (NG) of yellow-feathered broilers were detected by q-PCR. The morphological changes of intestinal tract were observed and statistically analyzed by electron microscopy and HE staining.
Compared with the control group, short-term fasting increased the expressions of hypothalamic orexigenic peptides AgRP (P<0.05) and NPY (P<0.01). Short-term fasting increased the concentration of intestinal H2O2, promoted the expressions of small intestinal tight junction protein (P<0.05), decreased the proportion of jejunal injury (P<0.01), and increased the absorption capacity of jejunal villi (P<0.01). Short-term fasting increased the expressions of anti-inflammatory factors IL-4 and IL-10 in jejunal mucosa (P<0.01). In addition, short-term fasting not only promoted the expressions of FFAR2 and NPY2R in NG (P<0.01), but also increased the expression of IL-4R (P<0.01).
Starvation can increase the levels of intestinal anti-inflammatory factors, enhance intestinal barrier function, and promote the expressions of receptors such as vagal anti-inflammatory factors in yellow-feathered broilers.
[1] |
APONTE Y, ATASOY D, STERNSON S M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training[J]. Nature Neuroscience, 2011, 14(3): 351-355.
|
[2] |
CHEN Y, LIN Y C, KUO T W, et al. Sensory detection of food rapidly modulates arcuate feeding circuits[J]. Cell, 2015, 160(5): 829-841. doi: 10.1016/j.cell.2015.01.033
|
[3] |
KRASHES M J, KODA S, YE C, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice[J]. The Journal of Clinical Investigation, 2011, 121(4): 1424-1428. doi: 10.1172/JCI46229
|
[4] |
TAKAHASHI K A, CONE R D. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons[J]. Endocrinology, 2005, 146(3): 1043-1047. doi: 10.1210/en.2004-1397
|
[5] |
MANDELBLAT C Y, RAMESH R N, BURGESS C R, et al. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales[J]. eLife, 2015, 4: e07122. doi: 10.7554/eLife.07122
|
[6] |
史萃菡, 李绮琪, 隋承融, 等. 持续禁食与恢复采食状态下食欲调控中枢不同核团兴奋性的比较[J]. 江西农业大学学报, 2022, 44(6): 1-11. doi: 10.13836/j.jjau.2022146
|
[7] |
吕毅, 王鑫鑫, 马文锋, 等. 肉仔鸡采食行为及其影响因素的研究[J]. 中国饲料, 2021(15): 12-16. doi: 10.15906/j.cnki.cn11-2975/s.20211503
|
[8] |
AHIMA R S, ANTWI D A. Brain regulation of appetite and satiety[J]. Endocrinology and Metabolism Clinics of North America, 2008, 37(4): 811-823. doi: 10.1016/j.ecl.2008.08.005
|
[9] |
朱灿俊. 肝素对哺乳动物采食及葡萄糖稳态的调节机制[D]. 广州: 华南农业大学, 2018.
|
[10] |
YU K B, HSIAO E Y. Roles for the gut microbiota in regulating neuronal feeding circuits[J]. The Journal of Clinical Investigation, 2021, 131(10): e143772. doi: 10.1172/JCI143772
|
[11] |
SCHWARTZ G J. Roles for gut vagal sensory signals in determining energy availability and energy expenditure[J]. Brain Research, 2018, 1693: 151-153. doi: 10.1016/j.brainres.2018.04.004
|
[12] |
MULLER P A, SCHNEEBERGER M, MATHEIS F, et al. Microbiota modulate sympathetic neurons via a gut-brain circuit[J]. Nature, 2020, 583(7816): 441-446. doi: 10.1038/s41586-020-2474-7
|
[13] |
COX N J, BOWYER R C E, NI LOCHLAINN M, et al. The composition of the gut microbiome differs among community dwelling older people with good and poor appetite[J]. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(2): 368-377. doi: 10.1002/jcsm.12683
|
[14] |
GABANYI I, LEPOUSEZ G, WHEELER R, et al. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature[J]. Science, 2022, 376(6590): eabj3986. doi: 10.1126/science.abj3986
|
[15] |
张贝贝. 精氨酸对肉仔鸡肠道黏膜损伤的缓解作用及机理研究[D]. 北京: 中国农业大学, 2018.
|
[16] |
梁小瑞, 王丹阳, 乔彦杰, 等. 三味清热类中药水提物对肉仔鸡肠道菌群和黏膜屏障功能的影响[J]. 中国畜牧兽医, 2020, 47(7): 2043-2054. doi: 10.16431/j.cnki.1671-7236.2020.07.009
|
[17] |
LIU Z, LI N, NEU J. Tight junctions, leaky intestines, and pediatric diseases[J]. Acta Paediatrica, 2005, 94(4): 386-393. doi: 10.1111/j.1651-2227.2005.tb01904.x
|
[18] |
FASANO A, NATARO J P. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins[J]. Advanced Drug Delivery Reviews, 2004, 56(6): 795-807. doi: 10.1016/j.addr.2003.10.045
|
[19] |
AMASHEH S, FROMM M, GÜNZEL D. Claudins of intestine and nephron: A correlation of molecular tight junction structure and barrier function[J]. Acta Physiologica, 2011, 201(1): 133-140. doi: 10.1111/j.1748-1716.2010.02148.x
|
[20] |
ATZENI F, DEFENDENTI C, DITTO M C, et al. Rheumatic manifestations in inflammatory bowel disease[J]. Autoimmunity Reviews, 2014, 13(1): 20-23. doi: 10.1016/j.autrev.2013.06.006
|
[21] |
BELI E, YAN Y, MOLDOVAN L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice[J]. Diabetes, 2018, 67(9): 1867-1879. doi: 10.2337/db18-0158
|
[22] |
MIHAYLOVA M M, CHENG C W, CAO A Q, et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging[J]. Cell Stem Cell, 2018, 22(5): 769-778. doi: 10.1016/j.stem.2018.04.001
|
[23] |
VITETTA L, LINNANE A W, GOBE G C. From the gastrointestinal tract (GIT) to the kidneys: Live bacterial cultures (probiotics) mediating reductions of uremic toxin levels via free radical signaling[J]. Toxins (Basel), 2013, 5(11): 2042-2057. doi: 10.3390/toxins5112042
|
[24] |
MILLER B M, LIOU M J, ZHANG L F, et al. Anaerobic respiration of NOX1-derived hydrogen peroxide licenses bacterial growth at the colonic surface[J]. Cell Host Microbe, 2020, 28(6): 789-797. doi: 10.1016/j.chom.2020.10.009
|
[25] |
林厦菁, 茅沈丽, 叶金玲, 等. 饲粮中添加柠檬酸对黄羽肉鸡生长性能、肠道免疫功能和菌群结构的影响[J]. 广东畜牧兽医科技, 2022, 47(5): 1-5. doi: 10.19978/j.cnki.xmsy.2022.05.01
|
[26] |
孟小林, 祁巧芬, 陈英, 等. 日粮添加复合益生菌对肉鸡生长性能、免疫功能及肠道健康的影响[J]. 饲料研究, 2022, 45(15): 52-56. doi: 10.13557/j.cnki.issn1002-2813.2022.15.012
|
[27] |
辜新贵, 王启军, 周樱, 等. 雏鸡消化道发育与营养消化吸收特征[J]. 广东畜牧兽医科技, 2010, 35(6): 11-15. doi: 10.3969/j.issn.1005-8567.2010.06.003
|
[28] |
傅予彤, 房勇, 曲绍军, 等. 复合益生菌制剂对肉仔鸡生长性能、肠道屏障功能及肠道菌群的影响[J]. 饲料工业, 2022, 43(14): 19-23.
|
[29] |
SIEMIAN J N, ARENIVAR M A, SARSFIELD S, et al. Hypothalamic control of interoceptive hunger[J]. Current Biology, 2021, 31(17): 3797-3809. doi: 10.1016/j.cub.2021.06.048
|
[30] |
ZHU C, JIANG Z, XU Y, et al. Profound and redundant functions of arcuate neurons in obesity development[J]. Nature Metabolism, 2020, 2(8): 763-774. doi: 10.1038/s42255-020-0229-2
|
[31] |
SWEENEY P, BEDENBAUGH M N, MALDONADO J, et al. The melanocortin-3 receptor is a pharmacological target for the regulation of anorexia[J]. Science Translational Medicine, 2021, 13(590): eabd6434. doi: 10.1126/scitranslmed.abd6434
|
[32] |
LU Q, YANG M F, LIANG Y J, et al. Immunology of inflammatory bowel disease: Molecular mechanisms and therapeutics[J]. Inflammation Research, 2022, 15: 1825-1844. doi: 10.2147/JIR.S353038
|
[33] |
袁川评, 王玮, 柳巨雄. 神经−内分泌−免疫网络与炎症性肠病[J]. 世界华人消化杂志, 2010, 18(19): 2024-2028.
|
1. |
马晓涓,王维英,张晓娟,才让卓玛,马祥,李思达,刘凯强. 基于无人机多源影像数据预测的高寒地区燕麦和豌豆混播生产性能综合评价. 青海畜牧兽医杂志. 2024(05): 33-40 .
![]() |