Citation: | LI Wanwen, DU Ningning, ZHOU Juanjuan, et al. Simulation of ecotoxicological effects of perchlorate and hexavalent chromium combined pollution in the aquatic ecosystem[J]. Journal of South China Agricultural University, 2024, 45(1): 52-59. DOI: 10.7671/j.issn.1001-411X.202211040 |
To investigate the ecotoxicological effects of ClO4− and Cr6+on the aquatic ecosystem under combined pollution conditions.
The aquatic ecosystem was constructed, Eichhornia crassipes, Daphnia carinata and Pomacea canaliculata with the same growth conditions were added, respectively, and exposed to water with different concentrations of ClO4− and Cr6+ and their combined pollution. The ecotoxicological effects of ClO4− and Cr6+ on E. crassipes, D. carinata and P. canaliculata under single and compound conditions were studied.
With the increase of exposure time, the population of D. carinata increased first and then decreased. The 0.02 mg·L−1 Cr6+ promoted the growth of D. carinata, while 200 mg·L−1 ClO4−, 0.20 mg·L−1 Cr6+ and their combined pollution inhibited the growth of D. carinata. The 0.02 mg·L−1 Cr6+ had little effect on the growth of P. canaliculata; Howerver, single ClO4− (20 and 200 mg·L−1) and 0.20 mg·L−1 Cr6+ as well as their combined pollution treatment groups had significant inhibitory effects. The contents of ClO4− and Cr6+ in each organ of E. crassipes increased with the increase of pollutant concentration in water. Under the same concentration of pollutant, the order of ClO4− content in all organs was leaf > stem > root, the order of Cr6+ content was root > stem > leaf. The contents of ClO4− in D. carinata and P. canaliculata were lower than that in E. crassipes.
Both single and combined pollution of ClO4− and Cr6+ cause toxic effects on organisms in aquatic ecosystems. E. crassipes has strong absorption ability to ClO4− and Cr6+, with ClO4− mainly concentrated in leaf, and Cr6+ in root. The absorbing abilities of D. carinata and P. canaliculata to ClO4− were weaker than that of E. crassipes.
[1] |
URBANSKY E T. Perchlorate chemistry: Implications for analysis and remediation[J]. Bioremediation Journal, 1998, 2(2): 81-95. doi: 10.1080/10889869891214231
|
[2] |
STETSON S J, WANTY R B, HELSEL D R, et al. Stability of low levels of perchlorate in drinking water and natural water samples[J]. Analytica Chimica Acta, 2006, 567(1): 108-113. doi: 10.1016/j.aca.2006.03.030
|
[3] |
LUIS S J, MIESNER E A, ENSLIN C L, et al. Review of perchlorate occurrence in large public drinking water systems in the United States of America[J]. Water Supply, 2019, 19(3): 681-694. doi: 10.2166/ws.2018.135
|
[4] |
JIANG S, COLE-DAI J, AN C, et al. Spatial variability of perchlorate in East Antarctic surface snow: Implications for atmospheric production[J]. Atmospheric Environment, 2020, 238: 117743. doi: 10.1016/j.atmosenv.2020.117743.
|
[5] |
PLEUS R C, COREY L M. Environmental exposure to perchlorate: A review of toxicology and human health[J]. Toxicology and Applied Pharmacology, 2018, 358: 102-109. doi: 10.1016/j.taap.2018.09.001
|
[6] |
陈桂葵, 杨杰峰, 黎华寿, 等. 高氯酸盐和铬复合污染对水稻生理特性的影响[J]. 生态学报, 2010, 30(15): 4144-4153.
|
[7] |
YU J, DONG H, SHI L, et al. Reproductive toxicity of perchlorate in rats[J]. Food and Chemical Toxicology, 2019, 128: 212-222. doi: 10.1016/j.fct.2019.04.014
|
[8] |
URBANSKY E T, BROWN S K. Perchlorate retention and mobility in soils[J]. Journal of Environmental Monitoring, 2003, 5(3): 455-462. doi: 10.1039/B301125A
|
[9] |
COATES J D, ACHENBACH L A. Microbial perchlorate reduction: Rocket-fuelled metabolism[J]. Nature Reviews Microbiology, 2004, 2(7): 569-580. doi: 10.1038/nrmicro926
|
[10] |
史亚利, 高健民, 李鑫, 等. 浏阳河水、底泥和土壤中高氯酸盐的污染[J]. 环境化学, 2010, 29(3): 388-391.
|
[11] |
WU Q, ZHANG T, SUN H W, et al. Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 543-550. doi: 10.1007/s00244-010-9485-6
|
[12] |
姜东生, 石小荣, 崔益斌, 等. 3种典型污染物对水生生物的急性毒性效应及其水质基准比较[J]. 环境科学, 2014, 35(1): 279-285.
|
[13] |
黄辉, 高峡, 王娟. 六价铬对玉米幼苗生长及抗氧化系统的影响[J]. 农业环境科学学报, 2011, 30(4): 633-638.
|
[14] |
彭叶棉, 杨阳, 侯素霞, 等. 外源六价铬在土壤中的有效性及其小麦毒性效应[J]. 生态环境学报, 2020, 29(2): 369-377.
|
[15] |
SVECEVIČ IUS G. Acute toxicity of hexavalent chromium to european freshwater fish[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(5): 741-747. doi: 10.1007/s00128-006-1126-4
|
[16] |
王爱云, 黄姗姗, 钟国锋, 等. 铬胁迫对3种草本植物生长及铬积累的影响[J]. 环境科学, 2012, 33(6): 2028-2037.
|
[17] |
KOTA J, STASICKA Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 2000, 107(3): 263-283. doi: 10.1016/S0269-7491(99)00168-2
|
[18] |
ZHOU J, DU N, LI D Q, et al. Combined effects of perchlorate and hexavalent chromium on the survival, growth and reproduction of Daphnia carinata[J]. Science of the Total Environment, 2021, 769: 144676. doi: 10.1016/j.scitotenv.2020.144676.
|
[19] |
张茹, 陈桂葵, 黎华寿, 等. 高氯酸盐与铅复合污染对8种空心菜幼苗生长的影响[J]. 农业环境科学学报, 2015, 34(3): 415-423.
|
[20] |
BLISS C I. The toxicity of poisons applied jointly[J]. Annals of Applied Biology, 1939, 26(3): 585-615. doi: 10.1111/j.1744-7348.1939.tb06990.x
|
[21] |
杨杰峰, 陈桂葵, 黎华寿. 高氯酸盐与铬复合污染对水稻幼苗生长的影响[J]. 农业环境科学学报, 2010, 29(2): 223-228.
|
[22] |
SMITH P N, YU L, MCMURRY S T, et al. Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA[J]. Environmental Pollution, 2004, 132(1): 121-127. doi: 10.1016/j.envpol.2004.03.017
|
[23] |
方齐乐, 陈宝梁. 高氯酸盐污染土壤及地下水的植物–微生物修复研究进展[J]. 环境科学学报, 2011, 31(8): 1569-1579.
|
[24] |
HE H Z, GAO H S, CHEN G K, et al. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues[J]. Environmental Science and Pollution Research, 2013, 20(10): 7301-7308. doi: 10.1007/s11356-013-1744-4
|
[25] |
GRANTZ D A, BURKEY K O, JACKSON W A, et al. Perchlorate content of plant foliage reflects a wide range of species-dependent accumulation but not ozone-induced biosynthesis[J]. Environmental Pollution, 2014, 184: 690-696. doi: 10.1016/j.envpol.2013.03.048
|
[26] |
陈倩, 陶功胜, 谢寅峰, 等. 高氯酸钾胁迫对水稻幼苗光合作用及保护酶活性的影响[J]. 江苏农业学报, 2013, 29(4): 715-721.
|
[27] |
VIJAYA NADARAJA A, PUSHPANGADHAN SARASWATHY D, CHERUVATHERY RAVINDRAN S, et al. Spatio-temporal distribution of perchlorate and its toxicity in Hydrilla verticillata[J]. Ecotoxicology and Environmental Safety, 2017, 144: 490-497. doi: 10.1016/j.ecoenv.2017.06.053
|
[28] |
THEODORAKIS C W, RINCHARD J, CARR J A, et al. Thyroid endocrine disruption in stonerollers and cricket frogs from perchlorate-contaminated streams in east-central texas[J]. Ecotoxicology, 2006, 15(1): 31-50. doi: 10.1007/s10646-005-0040-6
|
[29] |
CAMPBELL D E K, MONTGOMERIE R D, LANGLOIS V S. Lifecycle exposure to perchlorate differentially alters morphology, biochemistry, and transcription as well as sperm motility in Silurana tropicalis frogs[J]. Environmental Pollution, 2018, 237: 196-204. doi: 10.1016/j.envpol.2018.02.038
|
[30] |
谭敏卿, 赵雪松, 尤宏, 等. 高氯酸钠对斑马鱼胚胎的毒性效应[J]. 环境科学与管理, 2011, 36(9): 45-48. doi: 10.3969/j.issn.1673-1212.2011.09.010
|
[31] |
PARK J, RINCHARD J, LIU F, et al. The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish[J]. Ecotoxicology and Environmental Safety, 2006, 63(3): 343-352. doi: 10.1016/j.ecoenv.2005.04.002
|
[32] |
金伟. 盐和铬对单细胞藻生理生化的影响[J]. 河北大学学报(自然科学版), 2002, 22(1): 44-50.
|
[33] |
李玲, 李森, 樊华, 等. 水葫芦对重金属镉和铬的长期富集效应[J]. 安徽农业科学, 2016, 44(24): 34-37.
|
[34] |
BAKSHI A, PANIGRAHI A K. A comprehensive review on chromium induced alterations in fresh water fishes[J]. Toxicology Reports, 2018, 5: 440-447. doi: 10.1016/j.toxrep.2018.03.007
|
[35] |
PONTI B, BETTINETTI R, DOSSI C, et al. How reliable are data for the ecotoxicity of trivalent chromium to Daphnia Magna?[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2280-2287. doi: 10.1002/etc.2672
|
[36] |
任新, 赵雪松, 段小月, 等. 四溴二苯醚与高氯酸盐联合暴露对成年斑马鱼肝脏抗氧化系统的影响[J]. 唐山学院学报, 2018, 31(3): 29-34.
|
[37] |
MUKHI S, TORRES L, PATIÑO R. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios[J]. General and Comparative Endocrinology, 2007, 150(3): 486-494. doi: 10.1016/j.ygcen.2006.11.013
|
[38] |
CHEN H, GUO Z, ZHOU Y, et al. Accumulation, depuration dynamics and effects of dissolved hexavalent chromium in juvenile Japanese medaka (Oryzias latipes)[J]. Ecotoxicology and Environmental Safety, 2018, 148: 254-260. doi: 10.1016/j.ecoenv.2017.10.037
|
1. |
戴林华,黎远松,石睿. 基于改进YOLOv8n算法的水稻叶片病害检测. 湖北民族大学学报(自然科学版). 2024(03): 382-388 .
![]() |