• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
JIA Jia, WANG Huan, DUAN Mingming, et al. Accurate identification and correlation analysis of iron and zinc contents in soybean core accessions[J]. Journal of South China Agricultural University, 2023, 44(5): 760-768. DOI: 10.7671/j.issn.1001-411X.202211004
Citation: JIA Jia, WANG Huan, DUAN Mingming, et al. Accurate identification and correlation analysis of iron and zinc contents in soybean core accessions[J]. Journal of South China Agricultural University, 2023, 44(5): 760-768. DOI: 10.7671/j.issn.1001-411X.202211004

Accurate identification and correlation analysis of iron and zinc contents in soybean core accessions

More Information
  • Received Date: November 01, 2022
  • Available Online: November 12, 2023
  • Published Date: June 12, 2023
  • Objective 

    Aiming at the malnutrition problem caused by iron (Fe) and zinc (Zn) minerals deficiency for Chinese people, it is significant to conduct the accurate identification of Fe and Zn contents in soybean core accessions.

    Method 

    The 163 domestic and foreign soybean core accessions were planted in teaching base of South China Agricultural University consecutively in the early season from 2019 to 2020. The contents of two trace elements of Fe and Zn in the sample grains, were measured by flame atomic absorption spectrometer method, and the correlation analysis was carried out.

    Result 

    There were significant differences in the contents of two trace elements between the test years (P<0.05). The variation range of grain Fe content of soybean germplasm resources in two years was 71.02−147.91 mg·kg−1, the average Fe content was 107.09 mg·kg−1, and the variation range of grain Zn content was 36.32−53.11 mg·kg−1, the average content of Zn was 42.80 mg·kg−1. There was a positive correlation between Fe and Zn contents in grains of 163 soybean lines from different sources in different years, indicating that there was a strong mutual promotion between two elements. The mineral contents of 163 soybean accessions were divided into five grades by probability grading method, namely extremely low, low, medium, high and very high. And four soybean accessions with high Fe content, four with high Zn content, five with low Fe content, six with low Zn content and two with high Fe and Zn contents were screened out.

    Conclusion 

    The soybean core accessions screened with high/low Fe and Zn content in this study can not only be used for breeding new accessions rich in Fe and Zn content, but also provide the valuable materials for elucidating the genetic basis of functional and new nutrition accessions, and accelerate the use of soybean core accessions and promote the development of soybean production in the South China area.

  • [1]
    梁勇. 2022年7月世界农产品供需形势预测简报[J]. 世界农业, 2022(8): 127-132. doi: 10.3969/j.issn.1002-4433.2022.8.shijny202208013
    [2]
    寇坤. 大豆SOC1aSOC1b基因调控开花的功能研究[D]. 哈尔滨: 中国科学院东北地理与农业生态研究所, 2021.
    [3]
    SEDIVY E J, WU F Q, HANZAWA Y. Soybean domestication: The origin, genetic architecture and molecular bases[J]. The New Phytologist, 2017, 214(2): 539-553. doi: 10.1111/nph.14418
    [4]
    张东辉, 杨青春, 耿臻, 等. 有机大豆营养功效及栽培技术[J]. 农业工程, 2017, 7(2): 136-137.
    [5]
    DONG Y, YANG X, LIU J, et al. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean[J]. Nature Communication, 2014, 5: 3352. doi: 10.1038/necmms4352.
    [6]
    MESSINA M, ROGERO M M, FISBERG M, et al. Health impact of childhood and adolescent soy consumption[J]. Nutrition Reviews, 2017, 75(7): 500-515. doi: 10.1093/nutrit/nux016
    [7]
    HUANG J H, MA Q B, CAI Z D, et al. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.][J]. Journal of Agricultural and Food Chemistry, 2020, 68(23): 6448-6460. doi: 10.1021/acs.jafc.0c01271
    [8]
    RIZZO G, BARONI L. Soy, soy foods and their role in vegetarian diets[J]. Nutrients, 2018, 10(1): 43. doi: 10.3390/nu10010043.
    [9]
    ZHANG Y, GLADYSHEV V N. Comparative genomics of trace element dependence in biology[J]. Journal of Biological Chemistry, 2011, 286(27): 23623-23629. doi: 10.1074/jbc.R110.172833
    [10]
    LIM K H, RIDDELL L J, NOWSON C A, et al. Iron and zinc nutrition in the economically-developed world: A review[J]. Nutrients, 2013, 5(8): 3184-3211. doi: 10.3390/nu5083184
    [11]
    孙汉青, 刘力宽, 刘韬, 等. 青海23份春小麦铁、锌含量分析[J]. 分子植物育种, 2019, 17(19): 6563-6569.
    [12]
    ROY C, KUMAR S, RANJAN R D, et al. Genomic approaches for improving grain zinc and iron content in wheat[J]. Frontiers in Genetics, 2022, 13: 1045955. doi: 10.3389/fgene.2022.1045955.
    [13]
    KRISHNA T P A, MAHARAJAN T, CEASAR S A. The role of membrane transporters in the biofortification of zinc and iron in plants[J]. Biological Trace Element Research, 2022, 201: 464-478.
    [14]
    MARRIOTT B P, BIRT D F, STALLINGS V A, et al. Present Knowledge in Nutrition [M]. 11th Edition. London: Academic Press, 2020.
    [15]
    WELCH R M, GRAHAM R D. Breeding crops for enhanced micronutrient content[J]. Plant and Soil, 2002, 245(1): 267-276.
    [16]
    朱行. 富含铁元素水稻新品种[J]. 粮食与油脂, 2006, 19(4): 31.
    [17]
    GARG M, SHARMA N, SHARMA S, et al. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world[J]. Frontiers in Nutrition, 2018, 5: 12. doi: 10.3389/fnut.2018.00012.
    [18]
    青平, 曾晶, 李剑, 等. 中国作物营养强化的现状与展望[J]. 农业经济问题, 2019, 40(8): 83-93.
    [19]
    刘慧. 我国主要麦区小麦籽粒产量和关键营养元素含量评价及调控[D]. 杨凌: 西北农林科技大学, 2016.
    [20]
    张勇, 王德森, 张艳, 等. 北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析[J]. 中国农业科学, 2007, 40(9): 1871-1876.
    [21]
    杨治伟. 宁夏粳稻种质资源锌、铁含量的关联分析及地方品种籽粒锌含量的QTL定位[D]. 银川: 宁夏大学, 2019.
    [22]
    张标金, 聂根新, 魏益华, 等. 水稻子粒铁、锌和铜含量的基因型差异分析[J]. 作物杂志, 2014(5): 48-51.
    [23]
    董慕新, 张辉. 我国八省大豆主要矿质元素含量分布及相关性研究[J]. 作物学报, 1997, 23(5): 550-554.
    [24]
    BOUIS H E, HOTZ C, MCCLAFFERTY B, et al. Biofortification: A new tool to reduce micronutrient malnutrition[J]. Annals of Nutrition and Metabolism, 2009(55): 57-58.
    [25]
    黄欢明. 国家热带亚热带地区夏大豆品种区域试验[J]. 福建农业科技, 2018(9): 37-41.
    [26]
    邓佑林, 陆婷婷, 黄秀香, 等. 原子吸收分光光度法测定柚子皮中的铜和钾[J]. 化工技术与开发, 2019, 48(9): 39-42.
    [27]
    叶发兵, 袁娇, 何彦斌, 等. 鄂东茯苓中重金属离子铜、镉含量的测定[J]. 湖北农业科学, 2016, 55(16): 4269-4271.
    [28]
    王思琦, 宋记明, 曹敏, 等. 不同木薯种质资源主要矿物质元素差异性分析[J]. 热带作物学报, 2022, 43(8): 1577-1586.
    [29]
    聂继云, 李志霞, 李海飞, 等. 苹果理化品质评价指标研究[J]. 中国农业科学, 2012, 45(14): 2895-2903.
    [30]
    WANG H, JIA J, CAI Z D, et al. Identification of quantitative trait loci (QTLs) and candidate genes of seed iron and zinc content in soybean [Glycine max (L.) Merr.][J]. BMC Genomics, 2022, 23(1): 1-14. doi: 10.1186/s12864-021-08243-4
    [31]
    GARCIA-OLIVEIRA A L, CHANDER S, ORTIZ R, et al. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals[J]. Frontiers in Plant Science, 2018, 9: 937. doi: 10.3389/fpls.2018.00937.
    [32]
    何一哲. 高铁锌食药兼用小麦: 秦黑1号[J]. 农家科技, 2007(10): 7.
    [33]
    余赛西. 大豆在萌发过程中的铁锌营养强化[D]. 海口: 海南大学, 2018.
  • Cited by

    Periodical cited type(1)

    1. 马晓涓,王维英,张晓娟,才让卓玛,马祥,李思达,刘凯强. 基于无人机多源影像数据预测的高寒地区燕麦和豌豆混播生产性能综合评价. 青海畜牧兽医杂志. 2024(05): 33-40 .

    Other cited types(0)

Catalog

    Article views (141) PDF downloads (22) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return