Citation: | ZHU Jieyi, FENG Jiayi, SHENG Han, et al. Effects of litter biochar addition on sludge adaptability and heavy metal uptake of Ruellia simplex[J]. Journal of South China Agricultural University, 2023, 44(4): 504-512. DOI: 10.7671/j.issn.1001-411X.202210006 |
To explore the effects of different addition amounts of litter biochar on growth, heavy metal absorption and accumulation of Ruellia simplex planted in the sludge + soil mixed matrix, and provide a reference for the resource utilization of municipal sludge and garden waste.
A pot experiment was conducted to analyze the effects of adding 0 (CK), 1.5% (F1.5), 3.0% (F3.0) and 4.5% (F4.5) of litter biochar on growth, root morphology, physiology, nutrient and heavy metal uptake and accumulation of Ruellia simplex.
Compared with CK, F1.5 significantly increased plant height, root biomass, shoot biomass and whole plant biomass. The plant biomass decreased gradually with the increase of biochar addition. The biomass of F4.5 was significantly lower than that of CK, showing the characteristic of “low promotion and high inhibition”. Total root length, root surface area, average diameter and root volume of Ruellia simplex reached the maximum in F1.5 treatment, and all of them gradually decreased with the increase of biochar addition. Among all treatments, the contents of soluble protein and malondialdehyde (MDA) in roots of F1.5 were the lowest, and the activity of superoxide dismutase (SOD) was the highest. The SOD activity of roots showed a downward trend with the increase of biochar addition, while the change trends of soluble protein and MDA contents were opposite. Compared with CK, all treatments increased the uptakes of N, P and K of R. simplex shoots and roots to different degrees, reduced the contents of Cd and Cu in R. simplex plant to different degrees, and increased the contents of Pb and Ni. The accumulative amounts of N, P, K, Cd, Cu, and Pb in R. simplex plant showed a downward trend with the increase of biochar addition, and the accumulative amounts of N, P, K, Cd, Cu, Pb and Ni of F1.5 were significantly higher than those of CK.
The addition of 1.5% litter biochar significantly promoted R. simplex growth, absorption and accumulation of Pb, Cu, Cd and Ni, but excessive addition would inhibit plant growth and affect the repair effect of substrate. Therefore, the applied amount of biochar should be controlled reasonably in the practical application process.
[1] |
YANG G, ZHANG G, WANG H. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. doi: 10.1016/j.watres.2015.04.002
|
[2] |
HU Y, XU F, CHEN X, et al. Research progress on resource utilization of municipal sludge[J]. Meteorological and Environmental Research, 2019, 10(2): 64-66.
|
[3] |
陈学民, 王惠, 伏小勇, 等. 赤子爱胜蚓处理污泥对其性质变化的影响[J]. 环境工程学报, 2010, 4(6): 1421-1425.
|
[4] |
余杰, 陈同斌, 高定, 等. 中国城市污泥土地利用关注的典型有机污染物[J]. 生态学杂志, 2011, 30(10): 2365-2369.
|
[5] |
赖明丽, 董晓全, 谢姗宴, 等. 污泥施用下园林植物生长适应性和重金属吸收[J]. 华南农业大学学报, 2022, 43(4): 47-57.
|
[6] |
YUE Y, CUI L, LI Q M, et al. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth[J]. Chemosphere, 2017, 173: 551-556. doi: 10.1016/j.chemosphere.2017.01.096
|
[7] |
CORNELISSEN G, KUKULSKA Z, KALAITZIDIS S, et al. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science & Technology, 2004, 38(13): 3632-3640.
|
[8] |
周楫, 余亚伟, 蒋越, 等. 生物炭对污泥堆肥及其利用过程重金属有效态的影响[J]. 环境科学, 2019, 40(2): 987-993.
|
[9] |
卢晓蓉. 不同添加量凋落物及生物质炭对土壤有机碳矿化和微生物群落结构的影响[D]. 福州: 福建师范大学, 2019.
|
[10] |
SARMAH M, BORGOHAIN A, GOGOI B B, et al. Insights into the effects of tea pruning litter biochar on major micronutrients (Cu, Mn, and Zn) pathway from soil to tea plant: An environmental armour[J]. Journal of Hazardous Materials, 2023, 442(129970): 1-16.
|
[11] |
OLADOYE P O, OLOWE O M, ASEMOLOYE M D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature[J]. Chemosphere, 2022, 288: 132555. doi: 10.1016/j.chemosphere.2021.132555
|
[12] |
王淑民, 陈能海, 刘向国, 等. 粉煤灰钝化污泥对园林黄壤改良的效果[J]. 福建农业学报, 2018, 33(10): 1097-1103.
|
[13] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
|
[14] |
AGBNA G H D, SHE D L, LIU Z P, et al. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato[J]. Scientia Horticulturae, 2017, 222: 90-101. doi: 10.1016/j.scienta.2017.05.004
|
[15] |
袁金华, 徐仁扣. 稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J]. 生态与农村环境学报, 2010, 26(5): 472-476.
|
[16] |
朱自洋, 段文焱, 陈芳媛, 等. 干旱土壤中生物炭对黑麦草生长的促进机制[J]. 水土保持学报, 2022, 36(1): 352-359.
|
[17] |
KOCSIS T, KOTROCZÓ Z, KARDOS L, et al. Optimization of increasing biochar doses with soil-plant-microbial functioning and nutrient uptake of maize[J]. Environmental Technology & Innovation, 2020, 20(101191): 1-9.
|
[18] |
周劲松, 闫平, 张伟明, 等. 生物炭对东北冷凉区水稻秧苗根系形态建成与解剖结构的影响[J]. 作物学报, 2017, 43(1): 72-81.
|
[19] |
惠锦卓, 张爱平, 刘汝亮, 等. 添加生物炭对灌淤土土壤养分含量和氮素淋失的影响[J]. 中国农业气象, 2014, 35(2): 156-161.
|
[20] |
孙海妮, 王仕稳, 李雨霖, 等. 生物炭施用量对冬小麦产量及水分利用效率的影响研究[J]. 干旱地区农业研究, 2018, 36(6): 159-167.
|
[21] |
MORALES M M, COMERFORD N, GUERRINI I A, et al. Sorption and desorption of phosphate on biochar and biochar-soil mixtures[J]. Soil Use & Management, 2013, 29(3): 306-314.
|
[22] |
赵殿峰, 徐静, 罗璇, 等. 生物炭对土壤养分、烤烟生长以及烟叶化学成分的影响[J]. 西北农业学报, 2014, 23(3): 85-92.
|
[23] |
PURAKAYASTHA T J, BERA T, BHADURI D, et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security[J]. Chemosphere, 2019, 227: 345-365. doi: 10.1016/j.chemosphere.2019.03.170
|
[24] |
JABBOROVA D, MA H, BELLINGRATH-KIMURA S D, et al. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities[J]. Scientia Horticulturae, 2021, 290(110518): 1-7. doi: 10.1016/j.scienta.2021.110518
|
[25] |
唐光木, 侯艳艳, 潘金龙, 等. 棉杆生物炭对棉花根系特性及生理代谢的影响[J]. 西北农业学报, 2022, 31(3): 370-378.
|
[26] |
刘悦, 黎子涵, 邹博, 等. 生物炭影响作物生长及其与化肥混施的增效机制研究进展[J]. 应用生态学报, 2017, 28(3): 1030-1038.
|
[27] |
许樊蓉, 唐盛兰, 吴文, 等. 生物炭添加对娜塔栎容器苗生长和营养状况的影响[J]. 中南林业科技大学学报, 2022(7): 76-84.
|
[28] |
朱奕豪, 朱彦霖, 曹兴, 等. 生物炭对百合生理特性的影响[J]. 北方园艺, 2017(7): 92-98.
|
[29] |
李阳, 黄梅, 沈飞, 等. 生物炭对小麦种子萌发与幼苗生长的植物毒理效应[J]. 生态毒理学报, 2017, 12(1): 234-242.
|
[30] |
任怀新, 王冬梅, 王慧, 等. 生物炭对盐碱胁迫下黑麦草和紫花苜蓿光合及抗氧化特征的影响[J]. 农业工程学报, 2021, 37(17): 116-123.
|
[31] |
WU D, PENG W, BAO L, et al. Biochar alleviating heavy metals phytotoxicity in sludge-amended soil varies with plant adaptability[J]. Environmental Research, 2022, 215(114248): 1-10. doi: 10.1016/j.envres.2022.114248
|
[32] |
董盼盼, 张振明, 张明祥. 生物炭−植物联合修复对土壤重金属Pb、Cd分布效应[J]. 环境科学学报, 2022, 42(1): 280-286.
|
[33] |
王军, 刘程, 金鹏, 等. 污泥基生物炭对黑麦草生长特性及重金属累积的影响[J]. 安徽农业科学, 2022, 50(15): 79-82. doi: 10.3969/j.issn.0517-6611.2022.15.021
|
[34] |
NISSIM W G, PALM E, MANCUSO S, et al. Trace element phytoextraction from contaminated soil: A case study under Mediterranean climate[J]. Environmental Science & Pollution Research, 2018, 25(9): 9114-9131.
|
1. |
邓永涛,尹苗,王聪,陈希文. 猪舍环境影响因子预测模型的研究进展. 家畜生态学报. 2025(02): 122-128 .
![]() | |
2. |
刘艳昌,吴延昌,郭颖轩,李冬阳,张志霞,左现刚,李国厚. 生猪生长环境舒适度实时监测系统设计与实现. 家畜生态学报. 2024(06): 76-81+96 .
![]() | |
3. |
刘丙杰,侯慕馨,冀海燕. 基于支持向量机集成的船舶舱室温湿度预测. 海军工程大学学报. 2024(03): 21-25+32 .
![]() | |
4. |
朱佳明,孙彬,蒲施桦,潘学民,徐顺来,胡彬,齐仁立. 基于多环境因素分析的猪舍温湿度预测模型. 华南农业大学学报. 2024(05): 709-721 .
![]() | |
5. |
杨晓平,李雪寒,聂鹏程. 设施生猪环境调控现状研究和未来展望. 中国农业信息. 2024(02): 83-96 .
![]() | |
6. |
尤德安,邬锡权,陆畅,董钊杰,曾志雄,吕恩利. 数字孪生技术在现代化猪场生产应用的研究进展. 现代农业装备. 2023(04): 2-9+70 .
![]() | |
7. |
翟子鹤,陈小文,高莉平,张天柱. 基于梯度提升算法的温室黄瓜株高生长模拟. 中国农业大学学报. 2022(05): 134-145 .
![]() | |
8. |
杨东轩,吴叶兰,张刚刚,刘硕. 基于边缘计算与深度学习的禽舍监测系统设计. 江苏农业科学. 2022(09): 219-225 .
![]() | |
9. |
陈谦,杨涵,王宝刚,李文生,钱建平. 基于GRU神经网络模型的冷链运输温度时序预测. 农业大数据学报. 2022(01): 82-88 .
![]() | |
10. |
刘炫文,刘仁鑫. 猪舍小气候环境模拟预测技术研究综述. 江西农业学报. 2022(08): 122-126 .
![]() |