Citation: | MAO Yuanyang, CHEN Fangling, BIAN Zhiyi, et al. Management model and system based on fuzzy control for production environment of facility flowering Chinese cabbage[J]. Journal of South China Agricultural University, 2024, 45(1): 127-136. DOI: 10.7671/j.issn.1001-411X.202209034 |
To achieve real-time monitoring and precise regulation of the growing environment of facility flowering Chinese cabbage, a growing environment management model and system based on fuzzy control was designed.
The system used Internet of Things equipment to monitor environmental factors (atmospheric temperature, soil temperature, soil moisture, and soil electrical conductivity) information in real-time at seed germination period, leaf growth period and stalk formation period, and compared the monitored values with the values of suitable range of the parameters to obtain the deviation of each environmental factor and its change rate. The management model used a combination method of fuzzy reasoning and qualitative analysis to optimize the control amount of environmental factors, determined the regulation decision of environmental regulation equipment, and achieved the precise regulation of environmental factors.
The comparison tests of the management modes showed that the average real-time control performance of the control system mode was 0.10, 0.17, and 0.18, and the average accuracy was 0.78, 0.68, and 0.74 respectively in the three growth stages; The average real-time control performance of the manual management mode was 0.37, 0.41 and 0.43, and the average accuracy was 0.31, 0.34 and 0.30, respectively. The average real-time performance and accuracy of the management system were improved by 62.50% and 1.34 times respectively compared with the manual management mode.
This management system can realize the real-time acquisition and accurate regulation of the production environment information, and help users better manage the production of the facility flowering Chinese cabbage.
[1] |
李光光, 张华, 黄红弟, 等. 广东省菜薹(菜心)育种研究进展[J]. 中国蔬菜, 2011(20): 9-14.
|
[2] |
广东省农业农村厅. 2021年广东省蔬菜产销形势分析[EB/OL]. (2022-01-29)[2022-09-23]. http://dara.gd.gov.cn/cxxsfx/content/post_3802679.html.
|
[3] |
AYAZ M, AMMAD-UDDIN M, SHARIF Z, et al. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk[J]. IEEE Access, 2019, 7: 129551-129583. doi: 10.1109/ACCESS.2019.2932609
|
[4] |
李道亮, 杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报, 2018, 49(1): 1-20. doi: 10.6041/j.issn.1000-1298.2018.01.001
|
[5] |
金永奎, 盛斌科. 一体化全自动灌溉施肥机设计与试验[J]. 中国农村水利水电, 2019(8): 63-68. doi: 10.3969/j.issn.1007-2284.2019.08.013
|
[6] |
赵英杰. 国外农业信息化发展模式及对中国的启示[J]. 世界农业, 2007(4): 10-12. doi: 10.3969/j.issn.1002-4433.2007.04.004
|
[7] |
陈海淳. 发达国家农业信息化对我国的启示和借鉴[J]. 科技进步与对策, 2003, 20(14): 121-123.
|
[8] |
SRBINOVSKA M, GAVROVSKI C, DIMCEV V, et al. Environmental parameters monitoring in precision agriculture using wireless sensor networks[J]. Journal of Cleaner Production, 2015, 88: 297-307. doi: 10.1016/j.jclepro.2014.04.036
|
[9] |
KLERKX L, JAKKU E, LABARTHE P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda[J]. NJAS-Wageningen Journal of Life Sciences, 2019, 90/91: 100315. doi: 10.1016/j.njas.2019.100315.
|
[10] |
BASSO B, ANTLE J. Digital agriculture to design sustainable agricultural systems[J]. Nature Sustainability, 2020, 3(4): 254-256. doi: 10.1038/s41893-020-0510-0
|
[11] |
SHEPHERD M, TURNER J A, SMALL B, et al. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution[J]. Journal of the Science of Food and Agriculture, 2020, 100(14): 5083-5092. doi: 10.1002/jsfa.9346
|
[12] |
曹新, 董玮, 谭一酉. 基于无线传感网络的智能温室大棚监控系统[J]. 电子技术应用, 2012, 38(2): 84-87. doi: 10.3969/j.issn.0258-7998.2012.02.029
|
[13] |
张保华, 李士宁, 滕文星, 等. 基于无线传感器网络的温室测控系统研究设计[J]. 微电子学与计算机, 2008, 25(5): 154-157.
|
[14] |
张水保, 徐守志, 李丰杰. 智能温室远程监控系统设计[J]. 三峡大学学报(自然科学版), 2012, 34(2): 76-79.
|
[15] |
王纪章, 李萍萍, 毛罕平. 基于作物生长和控制成本的温室气候控制决策支持系统[J]. 农业工程学报, 2006, 22(9): 168-171.
|
[16] |
姬丽雯, 高菊玲, 刘永华. 基于MQTT的草莓温室物联网监控系统设计[J]. 农业开发与装备, 2021(12): 167-169. doi: 10.3969/j.issn.1673-9205.2021.12.079
|
[17] |
杨伟志, 孙道宗, 刘建梅, 等. 基于物联网和人工智能的柑橘灌溉专家系统[J]. 节水灌溉, 2019(9): 116-120. doi: 10.3969/j.issn.1007-4929.2019.09.025
|
[18] |
余国雄, 王卫星, 谢家兴, 等. 基于物联网的荔枝园信息获取与智能灌溉专家决策系统[J]. 农业工程学报, 2016, 32(20): 144-152. doi: 10.11975/j.issn.1002-6819.2016.20.019
|
[19] |
吴久江, 汪星, 李群, 等. 简易草莓大棚智慧管理系统设计与性能分析[J]. 农业机械学报, 2019, 50(12): 288-296. doi: 10.6041/j.issn.1000-1298.2019.12.033
|
[20] |
王润涛, 刘瑶, 王树文, 等. 基于模糊控制的车速跟随变量喷雾系统设计与试验[J]. 农业机械学报, 2022, 53(6): 110-117. doi: 10.6041/j.issn.1000-1298.2022.06.011
|
[21] |
韦玉翡, 赵建贵, 高安琪, 等. 温室环境参数模糊专家控制系统的设计[J]. 江苏农业科学, 2021, 49(6): 183-188.
|
[22] |
傅以盘, 肖振兴. 基于智能温控算法的温室管理系统[J]. 农机化研究, 2022, 44(6): 214-218. doi: 10.3969/j.issn.1003-188X.2022.06.037
|
[23] |
翟志宏, 林镇国, 陈慧华, 等. 广东菜心周年种植温度适宜性及其变化趋势[J]. 广东农业科学, 2016, 43(3): 66-71.
|