MAO Yuanyang, CHEN Fangling, BIAN Zhiyi, et al. Management model and system based on fuzzy control for production environment of facility flowering Chinese cabbage[J]. Journal of South China Agricultural University, 2024, 45(1): 127-136. DOI: 10.7671/j.issn.1001-411X.202209034
    Citation: MAO Yuanyang, CHEN Fangling, BIAN Zhiyi, et al. Management model and system based on fuzzy control for production environment of facility flowering Chinese cabbage[J]. Journal of South China Agricultural University, 2024, 45(1): 127-136. DOI: 10.7671/j.issn.1001-411X.202209034

    Management model and system based on fuzzy control for production environment of facility flowering Chinese cabbage

    More Information
    • Received Date: September 22, 2022
    • Available Online: November 22, 2023
    • Published Date: August 15, 2023
    • Objective 

      To achieve real-time monitoring and precise regulation of the growing environment of facility flowering Chinese cabbage, a growing environment management model and system based on fuzzy control was designed.

      Method 

      The system used Internet of Things equipment to monitor environmental factors (atmospheric temperature, soil temperature, soil moisture, and soil electrical conductivity) information in real-time at seed germination period, leaf growth period and stalk formation period, and compared the monitored values with the values of suitable range of the parameters to obtain the deviation of each environmental factor and its change rate. The management model used a combination method of fuzzy reasoning and qualitative analysis to optimize the control amount of environmental factors, determined the regulation decision of environmental regulation equipment, and achieved the precise regulation of environmental factors.

      Result 

      The comparison tests of the management modes showed that the average real-time control performance of the control system mode was 0.10, 0.17, and 0.18, and the average accuracy was 0.78, 0.68, and 0.74 respectively in the three growth stages; The average real-time control performance of the manual management mode was 0.37, 0.41 and 0.43, and the average accuracy was 0.31, 0.34 and 0.30, respectively. The average real-time performance and accuracy of the management system were improved by 62.50% and 1.34 times respectively compared with the manual management mode.

      Conclusion 

      This management system can realize the real-time acquisition and accurate regulation of the production environment information, and help users better manage the production of the facility flowering Chinese cabbage.

    • [1]
      李光光, 张华, 黄红弟, 等. 广东省菜薹(菜心)育种研究进展[J]. 中国蔬菜, 2011(20): 9-14.
      [2]
      广东省农业农村厅. 2021年广东省蔬菜产销形势分析[EB/OL]. (2022-01-29)[2022-09-23]. http://dara.gd.gov.cn/cxxsfx/content/post_3802679.html.
      [3]
      AYAZ M, AMMAD-UDDIN M, SHARIF Z, et al. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk[J]. IEEE Access, 2019, 7: 129551-129583. doi: 10.1109/ACCESS.2019.2932609
      [4]
      李道亮, 杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报, 2018, 49(1): 1-20. doi: 10.6041/j.issn.1000-1298.2018.01.001
      [5]
      金永奎, 盛斌科. 一体化全自动灌溉施肥机设计与试验[J]. 中国农村水利水电, 2019(8): 63-68. doi: 10.3969/j.issn.1007-2284.2019.08.013
      [6]
      赵英杰. 国外农业信息化发展模式及对中国的启示[J]. 世界农业, 2007(4): 10-12. doi: 10.3969/j.issn.1002-4433.2007.04.004
      [7]
      陈海淳. 发达国家农业信息化对我国的启示和借鉴[J]. 科技进步与对策, 2003, 20(14): 121-123.
      [8]
      SRBINOVSKA M, GAVROVSKI C, DIMCEV V, et al. Environmental parameters monitoring in precision agriculture using wireless sensor networks[J]. Journal of Cleaner Production, 2015, 88: 297-307. doi: 10.1016/j.jclepro.2014.04.036
      [9]
      KLERKX L, JAKKU E, LABARTHE P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda[J]. NJAS-Wageningen Journal of Life Sciences, 2019, 90/91: 100315. doi: 10.1016/j.njas.2019.100315.
      [10]
      BASSO B, ANTLE J. Digital agriculture to design sustainable agricultural systems[J]. Nature Sustainability, 2020, 3(4): 254-256. doi: 10.1038/s41893-020-0510-0
      [11]
      SHEPHERD M, TURNER J A, SMALL B, et al. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution[J]. Journal of the Science of Food and Agriculture, 2020, 100(14): 5083-5092. doi: 10.1002/jsfa.9346
      [12]
      曹新, 董玮, 谭一酉. 基于无线传感网络的智能温室大棚监控系统[J]. 电子技术应用, 2012, 38(2): 84-87. doi: 10.3969/j.issn.0258-7998.2012.02.029
      [13]
      张保华, 李士宁, 滕文星, 等. 基于无线传感器网络的温室测控系统研究设计[J]. 微电子学与计算机, 2008, 25(5): 154-157.
      [14]
      张水保, 徐守志, 李丰杰. 智能温室远程监控系统设计[J]. 三峡大学学报(自然科学版), 2012, 34(2): 76-79.
      [15]
      王纪章, 李萍萍, 毛罕平. 基于作物生长和控制成本的温室气候控制决策支持系统[J]. 农业工程学报, 2006, 22(9): 168-171.
      [16]
      姬丽雯, 高菊玲, 刘永华. 基于MQTT的草莓温室物联网监控系统设计[J]. 农业开发与装备, 2021(12): 167-169. doi: 10.3969/j.issn.1673-9205.2021.12.079
      [17]
      杨伟志, 孙道宗, 刘建梅, 等. 基于物联网和人工智能的柑橘灌溉专家系统[J]. 节水灌溉, 2019(9): 116-120. doi: 10.3969/j.issn.1007-4929.2019.09.025
      [18]
      余国雄, 王卫星, 谢家兴, 等. 基于物联网的荔枝园信息获取与智能灌溉专家决策系统[J]. 农业工程学报, 2016, 32(20): 144-152. doi: 10.11975/j.issn.1002-6819.2016.20.019
      [19]
      吴久江, 汪星, 李群, 等. 简易草莓大棚智慧管理系统设计与性能分析[J]. 农业机械学报, 2019, 50(12): 288-296. doi: 10.6041/j.issn.1000-1298.2019.12.033
      [20]
      王润涛, 刘瑶, 王树文, 等. 基于模糊控制的车速跟随变量喷雾系统设计与试验[J]. 农业机械学报, 2022, 53(6): 110-117. doi: 10.6041/j.issn.1000-1298.2022.06.011
      [21]
      韦玉翡, 赵建贵, 高安琪, 等. 温室环境参数模糊专家控制系统的设计[J]. 江苏农业科学, 2021, 49(6): 183-188.
      [22]
      傅以盘, 肖振兴. 基于智能温控算法的温室管理系统[J]. 农机化研究, 2022, 44(6): 214-218. doi: 10.3969/j.issn.1003-188X.2022.06.037
      [23]
      翟志宏, 林镇国, 陈慧华, 等. 广东菜心周年种植温度适宜性及其变化趋势[J]. 广东农业科学, 2016, 43(3): 66-71.
    • Cited by

      Periodical cited type(11)

      1. 李欣宇,叶尔江·拜克吐尔汉,王娟,张新娜,张春雨,赵秀海. 基于非线性混合效应模型的东北红松树高-胸径关系. 北京林业大学学报. 2025(03): 38-48 .
      2. 程雯,武晓昱,叶尔江·拜克吐尔汉,王娟,赵秀海,张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究. 北京林业大学学报. 2024(02): 28-39 .
      3. 王维芳,崔梦琦,邢凯然. 包含哑变量的大兴安岭天然白桦林碳密度模型. 森林工程. 2024(05): 74-81 .
      4. 吕乐乐,王文彬,董灵波. 基于哑变量和分位数回归的兴安落叶松更新幼树的树高-胸径模型. 应用生态学报. 2023(09): 2355-2362 .
      5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 .
      6. 郭卫红,郑庆荣,胡砚秋,陈晓江,李眉红. 山西五台山主要针叶树种树高—胸径曲线模型研究. 湖南林业科技. 2022(06): 72-77 .
      7. 王泳腾,黄治昊,王俊,张童,郎立华,孙国明,崔国发. 濒危植物黄檗的生存压力研究. 北京林业大学学报. 2021(01): 49-57 .
      8. 陈浩,罗扬. 马尾松树高-胸径非线性混合效应模型构建. 森林与环境学报. 2021(04): 439-448 .
      9. 张冬燕,王冬至,李晓,高雨珊,李天宇,陈静. 基于分位数回归的针阔混交林树高与胸径的关系. 浙江农林大学学报. 2020(03): 424-431 .
      10. 邓楠,马丰丰,宋庆安,周满,杨蕊,李典军,彭湃,田育新. 环境梯度对杉木公益纯林分布特征及生长的影响. 湖南林业科技. 2020(04): 8-15 .
      11. 韩辉,袁春良,张学利,宋鸽,安宇宁,孙晓辉. 基于林分生长量的沙地樟子松初植造林密度确定. 辽宁林业科技. 2020(06): 1-9+58 .

      Other cited types(5)

    Catalog

      Article views (123) PDF downloads (29) Cited by(16)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return